Systematic Stress Testing and Model Risk

Thomas Breuer, Imre Csizsár

PPE Research Centre, FH Vorarlberg, Austria
https://homepages.fhv.at/tb/cms/

Modelling in Life Insurance Conference
ISFA, Université Lyon 1
7 October 2015
1 First Generation Stress Tests

2 Second Generation Stress Tests

3 Measuring Model Risk: Stress Tests with Mixed Scenarios
Outline

1. First Generation Stress Tests
2. Second Generation Stress Tests
3. Measuring Model Risk: Stress Tests with Mixed Scenarios
Purpose of Stress Testing:
Complement statistical risk measurement

- Stress Tests: Which scenarios lead to big losses?
 Derive risk reducing action.
 (Statistical risk measurements: What are prob’s of big losses?)
- Stress Tests: Address model risk.
 Consider alternative risk factor distribution.
 (Statistical risk measurement: Assume fixed model.)
Requirements on stress scenarios (Basel II)

- plausible
- severe
- suggestive of risk reducing action

See Basel Principles of Sound Stress Testing
Reference risk factor distribution ν, Portfolio loss function L, both on risk factor space $\Omega \subset \mathbb{R}^n$.
What is a model?

REALITY
A loss X occurs in a particular situation

MODEL

$X \sim L(r)$

L: payoff function of portfolio:
- fully controllable

r: Risk Factors:
- not controllable, observable
- not controllable, not observable

use of model changes reality
Distribution model risk

REALITY
A loss \(X \) occurs in a particular situation

MODEL
\[X = L(r) \]

L: payoff function of portfolio:
- fully controllable

r: Risk Factors:
- not controllable, observable

use of model changes reality

specify distribution class
estimate parameters

estimated risk factor distribution
First Generation Stress Tests: Hand-picked Point Scenarios

- **Point scenario:** each risk factor gets a value: \(r \in \Omega \)
- A small number of scenarios is picked by hand, ideally involving heterogeneous groups of experts.

 \[A = \{ r^1, r^2, \ldots \} \subset \Omega \]

 a small set of hand-picked scenarios.

- Find worst case scenario and worst case loss in \(A \)

 \[\max_{r \in A} L(r) \]

- Worst case loss over \(A \) is a coherent risk measure.
First Generation Stress Tests: Examples

- most stress tests of market or credit risk performed by financial institutions
- SPAN rules
- FSAP stress tests
- US institutional stress tests during 2009 crisis
- 2014 stress tests of ECB
Criticism of First Generation Stress Tests

Are there any real stress tests whose results forced a bank to change strategy?

Accidental or deliberate misrepresentation of risks:

1. Neglecting severe but plausible scenarios
2. Considering too implausible scenarios
1 First Generation Stress Tests

2 Second Generation Stress Tests

3 Measuring Model Risk: Stress Tests with Mixed Scenarios
Second Generation Stress Tests: Plausible Scenarios

- **Measure of plausibility** for point scenarios:

 \[\text{Maha}(r) := \sqrt{(r - \mathbb{E}(r))^T \cdot \Sigma^{-1} \cdot (r - \mathbb{E}(r))}, \]

 where \(\Sigma \) is covariance matrix of risk factor distribution \(\nu \).

- **Intuition:**
 Scenarios in which some risk factors move many standard deviations are implausible.
 Scenarios in which some pair of risk factors moves against their correlation are implausible.
Second Generation Stress Tests: Systematic Point Scenario Analysis

- Set of plausible scenarios

\[A := \text{Ell}_h := \{ r : \text{Maha}(r) \leq h \}, \]

where \(h \) is the plausibility threshold.

- Systematic search of worst case scenario:

\[\max_{r \in \text{Ell}_h} L(r) \]
Second generation stress of linear portfolio

• Loss linear function of n normal risk factors:
 \[L(r) = l^T(\mu - r), \nu \sim N(\mu, \Sigma). \]

• Systematic search of worst case scenario:
 \[\max_{r \in \text{Ell}_h} l^T(\mu - r). \]

• Worst case scenario: \[\bar{\mu} = \mu - \frac{h}{\sqrt{l^T \Sigma l}} \Sigma l \]

• Worst case loss: \[\mathbb{E}_Q(L) = h \sqrt{l^T \Sigma l}. \]
Advantages of Systematic Stress Testing with Point Scenarios

All three requirements on stress testing are met:

- Do not miss plausible but severe scenarios.
- Do not consider scenarios which are too implausible.
- Worst case scenario over $\mathbb{E}_{\mathbb{l}_h}$ gives information about portfolio structure and suggests risk reducing action.
Problems of Systematic Stress Testing with Point Scenarios

1. What if risk factor distributions ν is non-elliptical?
2. What if risk true factor distribution is not ν? Model risk is not addressed.
3. Maha does not take into account fatness of tails.
4. $\text{MaxLoss}_{\text{Ell}_k}$ depends on choice of coordinates.
Outline

1. First Generation Stress Tests

2. Second Generation Stress Tests

3. Measuring Model Risk: Stress Tests with Mixed Scenarios
Mixed Scenarios

Mixed scenario: Probability distribution of point scenarios.

- **Interpretation 1:**
 Risk factor distributions alternative to the prior ν. Model risk.

- **Interpretation 2:**
 Generalisation of point scenarios, but support not concentrated on one point.
Plausibility of Mixed Scenarios

- **Measure of plausibility for mixed scenarios:**
 relative entropy from \(\nu \)
 \((I\text{-divergence, information gain, Kullback-Leibler distance})\)

\[
I(Q||\nu) := \begin{cases}
\int \frac{dQ}{d\nu}(r) \log \frac{dQ}{d\nu}(r) d\nu(r) & \text{if } Q \ll \nu \\
+\infty & \text{if } Q \not\ll \nu
\end{cases}
\]

- **Intuition:**
 Relative entropy \(I(Q||\nu) \) measures the ‘distance’ of the distributions \(Q \) and \(\nu \).
 \(I(Q||\nu) = 0 \) if and only if \(Q = \nu \) (as distributions)
Worst Case Scenario

- **Set of plausible scenarios:** Instead of ellipsoid take Kullback-Leibler sphere in the space of distributions

\[A := S(\nu, k) := \{ Q : I(Q|\nu) \leq k \}. \]

- **Severity of scenarios:** Instead of \(L(r) \) take \(\mathbb{E}_Q(L) \)

- Systematic stress test with mixed scenarios:

\[\sup_{Q \in S(\nu,k)} \mathbb{E}_Q(L) =: \text{MaxLoss}_k(L) \]

If it exists, call scenario achieving MaxLoss: \(\bar{Q} \).
Model Risk

- estimation error: wrong distribution parameters
- model misspecification: wrong model class
- \(\sup_{Q \in S(\nu,k)} \mathbb{E}_Q(L) \) quantifies effects of both on expected loss.
Advantages of Systematic Stress Testing with Mixed Scenarios

1. Scenario set is naturally defined for non-elliptical risk factor distributions ν.

2. Model risk is addressed:
 Mixed scenarios are alternatives to prior risk factor distribution ν.

3. Relative entropy does take into account fatness of tails of ν.

4. MaxLoss_k does not depend on choice of coordinates.
The Basic Tool

• Tool from large deviations theory for solving explicitly the optimisation problem \(\sup_{Q \in S(\nu, k)} E_Q(L) \):

\[\Lambda(\theta) := \log \left(\int e^{\theta L(r)} d\nu(r) \right). \]
Basic Properties of the Λ-function

- $\Lambda(0) = 0$.
- Λ is convex.
Solution of Worst Case: The Generic Case

Theorem

- Except in the pathological cases (i), (ii), (iii) below, the equation
 \[\theta \Lambda'(\theta) - \Lambda(\theta) = k, \]
 has always a unique positive solution \(\bar{\theta} \).
- The mixed worst case scenario \(\overline{Q} \) is the distribution with \(\nu \)-density
 \[\frac{dQ}{d\nu}(r) = e^{\bar{\theta}L(r) - \Lambda(\bar{\theta})}, \]
- The Maximum Loss achieved in the mixed worst case scenario \(\overline{Q} \) is
 \[\mathbb{E}_{\overline{Q}}(L) = \Lambda'(\bar{\theta}). \]
Practical Calculation of Worst Case

1. Calculate $\Lambda(\theta)$. (Evaluate n-dimensional integral.)
2. Starting from the point $(0, -k)$, lay a tangent to $\Lambda(\theta)$ curve.
3. Worst case loss is given by the slope of the tangent.
4. Worst case scenario is distribution with density
 \[\frac{dQ}{d\nu}(r) = e^{\bar{\theta}L(r) - \Lambda(\bar{\theta})}, \]
 where $\bar{\theta}$ is θ-coordinate of tangent point.
Normal risk factors, linear portfolio

- Loss linear function of n risk factors: $L(r) = l^T(\mu - r), \nu \sim N(\mu, \Sigma)$.
- Λ quadratic: $\Lambda(\theta) = l^T \Sigma l \theta^2 / 2$.
- Worst case scenario: $\overline{Q} \sim N(\overline{\mu}, \Sigma)$ with $\overline{\mu} = \mu - \frac{h}{\sqrt{l^T \Sigma l}} \Sigma l$ where $h = \sqrt{2k}$.
- Worst case loss: $\mathbb{E}_{\overline{Q}}(L) = h \sqrt{l^T \Sigma l}$.
Summary

Systematic stress tests with mixed scenarios

- do not neglect dangerous scenarios when they are plausible,
- do not produce highly implausible scenarios,
- are applicable to both continuous and discrete risk factors with arbitrary distributions,
- quantify the effects of model risk...

... and can be implemented straightforwardly.
Some references

• Breuer T., M. Jandacka, K. Rheinberger, M. Summer: How to find plausible, severe, and useful stress scenarios, International Journal of Central Banking 5 (2009), 205-224
