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Two problems with censoring - Lifetime / Claim amount

Estimate some individual lifetime T given features X € RY,

Only observe the follow-up time Y : censored observation.

@ The claim is still opened and has been under payment for a
time Y (the claim is not closed).

The total claim amount M is still unknown : just paid N < M.
M to predict (or total claim lifetime T) from X € RY.
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Clustering by trees : key components

To estimate our quantity of interest, use a tree approach where :

@ the root : whole population to segment = starting point;
@ the branches : correspond to splitting rules ;

© the leaves : homogeneous disjoint subsamples of the initial
population, give the estimation of the quantity of interest.

A reference in actuarial sciences — [Olb12] : builds experimental

mortality tables of a reinsurance portfolio by predicting death rates.
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Example : predicting owner status
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Partition and tree : maximal global homogeneity
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@ Building the tree - steps
@ Building steps to estimate the expectation
@ Stopping rules
@ Pruning criterion
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Regression trees : Y continuous and fully observed

Regression problem :

7T0(X)= Eo[Y|X:X] (1)

— Most famous option : linear relationship b/w Y and X (limit
ourselves to a given class of estimator) = mean squared error.
— In full generality, we cannot consider all potential estimators of
no(X) = trees are another class : piecewise constant functions.

Building a tree provides a sieve of estimators, obtained from
successive splits of covariate space X.

33



CART estimator : a piecewise constant estimator

@ L is the number of leaves for the tree, [ its index,
@ Ry(x) = fi(x € X)) : splitting rule,

@ 9 = E,[Y|x € X|] : empirical mean of Y in leaf I,
@ The partitions X; C X are

e disjoints (XN X, =0,1% ),
e exhaustive (X = U, X)).

This (piecewise constant) form can be generalized whatever the
quantity of interest (expectation, median, ...).
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Building the tree : splitting criterion

— Must be suitable to our task.
— To solve (1), OLS are used since the solution is given by

mo(x) = argmin Eo|¢(T. (%)) X = x| (3)

where ¢(T,n(x)) = (T —n(x))? (¢ loss function)

— Here, results in minimizing the intra-node variance at each step.

— If T is fully observed, building the regression tree with this
criterion is consistent ((BFOS84]).
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Pruning : penalize by tree complexity

CART principle : do not stop the splitting process, and buid the
“maximal” tree (size K(n)), then prune it.
— We get a sieve of estimators (#%(x))k1.... K(n)-

Avoid overfitting = find the best subtree of the maximal tree, with a
trade-off betwwen good fit and complexity :

R.(7%(x)) = E.[®(Y. 7% (X)) ] +  (K/n).

If @ fixed, the final estimator (pruned tree) yields

#(x) = argmin R,(#%(x)). (4)

@
(”)K1 LK(n)
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e Extend to (potentially) censored data
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Back to our data

We observe a sample of i.i.d. random variables (Y}, N, 6i, Xi)1<i<n
with same distribution (Y, N, 6, X), where

Y = inf(T.C),
{N — inf(M, D),

and
6 =17<c = 1m<D-

@ C et D are the censoring variables, for instance :
e C = time b/w the declaration date and the extraction date ;
e D = current amount paid for this claim.
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Focus on lifetime T : what we would like to do

In practice, we only observe i.i.d. replications (Y, 6;, Xi)1<i<n Where

Y = inf(T.C)
6 = 11

@ Current lifetime Y, not closed : 6 = 0.

@ We seek
T"=E[T|6=0,Y,X].

@ Goal : find an estimator of T* from observations.

Pitfalls : we do not observe i.i.d. replications of M = standard
methods do not apply (LLN).
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Ingredients : Kaplan-Meier estimator and IPCW

@ Assume that T is independent from C.

N 0
fo-1 [l
Q 2721 1Y,-2Y1

@ This estimator tends to F(t) = P(T < t).

@ Define :

e Additive version:  F(t) = X1, Winlv<t,

where
0

[t =GV
with G(t) the Kaplan-Meier estimator of G(t) = P(C < t).

in
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Why does it work ?

1_ i
M1-G(Yi-)

@ Recall that W, =

© Moreover (LLN),
Z ”¢ (Yi) = Z 1 _I

Proposition

is "close" to W7 =1

Y, —p.s. E [

For all function ¢ such that E[¢(T)] < o,

el 24)

G(Y-)

B!

di
n 1*G(Yif) :

so(Y

e
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Application to our context

Would like to estimate quantities like E[¢(T, X)] (see eq. (3)).

Proposition
Assume that :
@ Cis independent from (T, X);

Th
en E[M] — E[¢(T. X)]
n(1-G(Y-)) o

and
5p(Y, X)

E[m |X] = E[¢(T, X)|X].
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@ Thus to estimate E[¢(T, X)], we use

1Zn: sip(Yi X)) <
nEH1-G(Yim)

=

Wind(Yi, X).
1

@ Therefore, to estimate quantities like

E|(#(Ti) - a)*1xex]

where X is a subspace, we compute

n
D Win(8(Y)) — @)1 xex.
i=1
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Quality of our CART estimator : simulation study

Consider the following simulation scheme :

@ draw n + v iid replications (Xj, ..., X,) of the covariate, with
Xi ~U(0,1);

@ draw n + v iid lifetimes ( Ty, ..., T,,) following an exponential
distribution such that
Ti ~ E(B = a1 Mxefap] + @2Mxepe] + @3lxelcd + @alixelde])-
(notice that there thus exist four subgroups in the whole population)
@ draw n + v iid censoring times, Pareto-distributed :
Ci ~ Pareto(A, u);

© from the simulated lifetimes and censoring times, get for all i the
actual observed lifetime Y; = inf(T;, C;) and the indicator §; = 17.<¢, ;

@ compute the estimator G from the whole generated sample
(Yi, 6i)1<i<ntv-
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% of Sample Group-specific MWSE Global
censored size | Group 1 Group 2 Group3d Group4| MWSE
observations n MWSE MWSE MWSE MWSE

100 0.19516  0.42008 0.17937 0.30992 | 1.10454

500 0.03058  0.07523  0.03183  0.06029 | 0.19796

10% 1000 | 0.01509 0.03650 0.01517 0.02619 | 0.09306
5000 | 0.00295 0.00714 0.00289 0.00530 | 0.01804

10 000 | 0.00105 0.00378 0.00117 0.00292 | 0.00910

100 0.20060  0.43664 0.17448 0.29022 | 1.10765
500 0.03736  0.07604 0.04301 0.06584 | 0.22217

30% 1000 | 0.01748 0.04095 0.01535 0.02674 | 0.10043
5000 | 0.00319 0.00758 0.00291  0.00547 | 0.01904

10 000 | 0.00117 0.00372 0.00125 0.00292 | 0.00930

100 0.19784  0.45945 0.17387 0.28363 | 1.11476

500 0.04906 0.08993  0.05301 0.06466 | 0.25668
50% 1000 | 0.02481 0.05115 0.01788 0.03004 | 0.12387
5000 | 0.00520 0.00867 0.00389 0.00516 | 0.02299
10 000 | 0.00153 0.00407 0.00162 0.00308 | 0.01057
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Global MSE
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0 Applications
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Application 1 : income protection

We refer to short-term disability contracts over 6 years with the
following information :

@ 83 547 claims;

@ PH ID, cause (sickness or accident), gender, SPC, age,
duration in disability state (censored or not), distribution
channel;

@ the censoring rate equals 7.2%;
@ mean lifetime in disability state : 100 days.

Goal : find a segmentation to predict how much time the disability
state lasts.
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Tree estimator : the age at claim seems to be key

BegAgeClassT=ab
T

BegAge(lassT=cd

BegAgeClassT=a

Sex=b Sex=b BegAgellassT=c 1254
n=23689
g2los 7al29 Cauge=b g Cause=b Comiet=b
n=14714 n=3971 n=2572
7952 98152 982 M2 9594 1124
n=7698 n=744 n=12522 n=2067 n=962 n=14608

Fiaure: Disability duration explained by sex, SPC, network, age, cause.
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Usually, the recovery rates used to compute technical provisions
for this guarantee depends on the age at the claim date due to
local prudential regulation = we fit a Cox PH with this covariate :

@ leads to consider the high predictive power of this variable ;
@ PH assumption rejected by all tests (LR, Wald and log-rank) ;

@ obtained results will be considered as benchmarks to enable
a comparison with those resulting from the tree approach.

Classes Mean Age  Tree Cox
a 26.83 64.44  80.01
b 34.19 85.48 96.35
c 39.57 100.04 110.19
d 45.05 111.38 126.03
e 51.29 126.40 146.28

TasLe: Expected disability time (days) depending on age at disability time.
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— We observe significant differences between Tree / Cox
estimates.

— These differences can be explained by two phenomena
resulting from using the Cox proportional-hazards model :

@ the estimation of the baseline hazard is very sensitive to
highest disability durations (mainly concentrated in class e).
— affect the estimates of all other classes;;

@ our approach directly target the duration expectation while

Cox partial-likelihood is focused on estimating the hazard rate.
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Application 2 : reserving

Seek E[M|§=0,X,Y,N]|

Get back to quantities only conditioned by covariates X :

EMI§=0,X=x,Y=y,N=n = E[MIM>=nT2>y,X=X|
E[M1ymznTsy | X = X]
P(Tzy,M>n|X=x)

Def|ne ¢1 (ta m) — m1 mZn,TZ}U ¢2(t, m) — 1[2y’m2n.
Estimate the ratio of

(1) E[¢:(T,M)|X = x| over  (2) E[¢2(T, M)| X = x].
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Our data

Third-party insurance in medical field in US, with 648 claims and
various individual characteristics (specialty, class, county, reopen

status, ...) with large heterogeneity.

Claim.entry Indemn.res ALAE.res (..) Cens. Already.paid Reserved

47 2000-07-14 O 0.00 1
48 2000-07-24 5000 13880.25 0
49 2000-07-31 5000 11304.60 0
50 2000-07-31 5000 103471.31 0
51 2000-08-04 O 0.00 1
52 2000-08-14 0 0.00 1
53 2000-08-15 0 0.00 1
54 2000-08-28 0 0.00 1

> summary (myData$Observed.total)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 2644 41760 18500 1557000
> (tx.censure.learning) ; (tx.censure.validation)
[1] 32.19178 [1] 34.375

3456
138435
7300
118136
46587
3083

0

980

0
18880
16305

108471

0

0
0
0
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Predictions of quantity (1) : E[M1(ysn75y) | X = X]
Pruned survival tree

County=c
T
1.058¢+04 T.decla>=276
n=290
T.declap=730.5 T.declak 181.5
4.071e+04 T.decla 729.5 1.658e+05 Speciplty=
n=152 n=29
Clasg=bc 4.171e+05 8853 T.declap=259.5
n=4 n=3
7.404e+04 T.declak 681.5 2.714e+05 T.declak 244.5
n=51 n=2
1.171e+05 Tdeclap=692.5 9256405  1.481e+06
n=36

n=9 n=2

1.898e+05 9.113e+05
n=4 n=1

29/33



Predictions of quantity (2) : PM>n,T>y | X=Xx)

Pruned survival tree, numerical results

Error of the tree:

> (1.0 - (confusion.matrix[1,1]+confusion.matrix[2,2]) / sum(confusion.matrix))*

%

> cat("The test sample estimate of the prediction error in the pruned tree is",
The test sample estimate of the prediction error in the pruned tree is 18.6 %

Predicted probabilities for the denominator:

(..) Censure Already.paid Reserved Observed.total

1

(== — I — R

24
1844
444
0
3907
0
1061
1061
1061

24
1844
444
0
3907
0
1061
1061
1061

KM.weight Proba.
. 1496063
.1496063
.1935484
.1496063
.2307692
.7500000
. 7400000
.2307692
. 7400000

0.0017
0.0017
0.0017
0.0017
0.00176
0
0
0
0

oo

censorship
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Final ratio (1)/(2) and comparison to experts’ opinions

BHHHHBRHHH AR R R AR R R AR R AR BB HARR BB R AR BB H R AR BB R AR R R AR R R AR A
## Final prediction of total claim amount for censored claims.

fEdd it dd s ddadd s ddd ettt gt
## Comparison b/w predictions from the tree and the one from the expert.

vV V V V

Censure Already.paid Reserved Obs.total Adj.predicted.claims Expert.prediction

0 0 81000 0 70752.37 81000
0 0 71600 0 10585.00 71600
0 0 0 0 10585.00 0
0 0 13500 0 10585.00 13500
0 0 52700 0 55008.11 52700
0 0 2500 0 10585.00 2500
0 0 55500 0 70752.37 55500
0 0 62100 0 55008.11 62100
0 0 81000 0 54274.67 81000
0 1061 42139 1061 55008.11 43200
0 4266 57834 4266 70752.37 62100

> ## Difference in % (due also to absent expert’ opinion leading to no reserve)
> (Reserve.gap <- round((abs(Tree.totalLumpSum.toReserve - Expert.totalLumpSum.
[1] 14.47 => It seems that experts have tendency to overestimate the reserve
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Final remarks

+ Can reveal to be a useful method for many applications, e.g.
experimental mortality databases, ...

+ Simple and easy-to-understand final estimator.

+ Consistent procedure and theoretical guarantees.
+ Discriminating power of covariates.

+ Extensions by working on the loss function.

- Instability : need to gain robustness (random forests, ...).
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And our working paper :

https://hal.archives-ouvertes. fr/hal-01141228/file/
TreeCensoredRegression-LopezMilhaudTherond.pdf
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