
Poincaré inequalities revisited
for dimension reduction

Olivier Roustant*, Franck Barthe** and Bertrand Iooss**,***

* Mines Saint-Étienne – ** Institut de Mathématiques de Toulouse – *** EDF, Chatou

ISFA – 10 March 2017, Lyon

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 1 / 47



Part I

Background and motivation
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Background and motivation

A case study for global sensitivity analysis

A simplified flood model [Iooss, 2011], [Iooss and Lemaitre, 2015].
1 output: maximal annual overflow (in meters), denoted by S:

S = Zv + H − Hd − Cb with H =

 Q

BKs

√
Zm−Zv

L

0.6

where H is the maximal annual height of the river (in meters).
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Background and motivation

A case study for global sensitivity analysis

8 inputs variables assumed to be independent r.v., with distributions:

Input Description Unit Probability distribution
X1 = Q Maximal annual flowrate m3/s Gumbel G(1013, 558),

truncated on [500, 3000]
X2 = Ks Strickler coefficient - Normal N (30, 82),

truncated on [15,+∞[
X3 = Zv River downstream level m Triangular T (49, 50, 51)
X4 = Zm River upstream level m Triangular T (54, 55, 56)
X5 = Hd Dyke height m Uniform U [7, 9]
X6 = Cb Bank level m Triangular T (55, 55.5, 56)
X7 = L River stretch m Triangular T (4990, 5000, 5010)
X8 = B River width m Triangular T (295, 300, 305)

Aim: To detect unessential Xi ’s, to quantify the influence of Xi ’s on S, . . .
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A case study for global sensitivity analysis

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normal
Triangular
Gumbel

Figure: The 3 distributions types of the case study, here with mean 0 and variance 1
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Background and motivation

Towards variance-based sensitivity measures

Framework. X = (X1, . . . ,Xd ) is a vector of independent input variables with
distribution µ1 ⊗ · · · ⊗ µd , and g : ∆ ⊆ Rd → R is such that g(X) ∈ L2(µ).

Sobol-Hoeffding decomposition [Sobol, 1993, Efron and Stein, 1981]

g(X) = g0 +
d∑

i=1

gi (Xi ) +
∑

1≤i<j≤d

gi,j (Xi ,Xj ) + · · ·+ g1,...,d (X1, . . . ,Xd )

The gI ’s satisfy E [gI(XI)|XJ ] = 0 if J ( I, implying orthogonality.
They are obtained sequentially via

E(g(X)|XI) =

∫
Rd−|I|

g(x)dµ−I(x−I)
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Background and motivation

Variance-based and derivative-based measures

Variance decomposition and Sobol indices

Partial variances: DI = Var(gI(XI)), and Sobol indices SI = DI/D

D := Var(g(X)) =
∑

I

DI , 1 =
∑

I

SI

Total index: DT
i =

∑
J⊇{i} DJ , ST

i =
DT

i
D .

Derivative Global Sensitivity Measure (DGSM),
[Sobol and Gershman, 1995], [Kucherenko et al., 2009]

νi =

∫ (
∂g(x)

∂xi

)2

dµ(x)

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 7 / 47



Background and motivation

Variance-based and derivative-based measures

Variance decomposition and Sobol indices

Partial variances: DI = Var(gI(XI)), and Sobol indices SI = DI/D

D := Var(g(X)) =
∑

I

DI , 1 =
∑

I

SI

Total index: DT
i =

∑
J⊇{i} DJ , ST

i =
DT

i
D .

Derivative Global Sensitivity Measure (DGSM),
[Sobol and Gershman, 1995], [Kucherenko et al., 2009]

νi =

∫ (
∂g(x)

∂xi

)2

dµ(x)

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 7 / 47



Background and motivation

Variance-based and derivative-based measures

Usage for screening.
If either DT

i = 0 or νi = 0, than Xi is non influential

Advantages / Drawbacks
Computational cost Interpretability

Sobol indices - +
DGSM + -

↓

Can we use DGSM to do screening based on Sobol indices?
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Background and motivation

Poincaré inequality

Poincaré inequality (1-dimensional case)

A distribution µ satisfies a Poincaré inequality if the energy in L2(µ) sense of
any centered function is controlled by the energy of its derivative:

For all h in L2(µ) such that
∫

h(x)dµ(x) = 0, and h′(x) ∈ L2(µ):∫
h(x)2dµ(x) ≤ C(µ)

∫
h′(x)2dµ(x)

The best constant is denoted CP(µ).
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Background and motivation

Link between total Sobol indices and DGSM

Theorem [Lamboni et al., 2013], extended in [Roustant et al., 2014]

If µi admits a Poincaré inequality, then there is a Poincaré-type inequality
between total indices and DGSMs

Di ≤ DT
i ≤ C(µi )νi

Proof. Denote gT
i (x) :=

∑
J⊇{i} gJ(xJ). Then:

∂g(x)

∂xi
=
∂gT

i (x)

∂xi

DT
i = Var(gT

i (x)) =

∫ (
gT

i (x)
)2

dµ(x)

≤ C(µi )

∫ (
∂gT(x)

∂xi

)2

dµ(x) = C(µi )νi
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Background and motivation

’Low-cost’ screening based on Sobol indices via DGSM
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Figure: Total Sobol index ST
i & Upper bound C(µi )νi/D
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Background and motivation

’Low-cost’ screening based on Sobol indices via DGSM

Even if the Poincaré inequality is not accurate,
it may be enough to screen out the less influential variables
→ Zm,L,B in the case-study

When is the upper bound C(µi )νi large (compared to DT
i )?

νi is large C(µi ) is large
↓ ↓

Ex: high frequency in g w.r.t. xi
...we cannot do anything! We can look for smallest C(µi )
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Background and motivation

Why not transforming the problem to get uniform distributions?

Example with X1,X2 i.i.d. N (0,1) truncated on I = [−b,b]

f (X1,X2) = X1 + X2 g(U1,U2) = F−1
X (U1) + F−1

X (U2)

Xi

f(
X

)

−b b Ui

g(
U

)

0 1−
b

b

The Sobol indices of f and g are the same

Difference on optimal upper bounds computed with DGSM

µ(I) ST Upper bound with DGSM Upper bound with DGSM
Original problem (with f) Transformed problem (with g)

1 0.5 0.5 +∞
0.95 0.5 0.52 1.48
0.75 0.5 0.56 1.00

The derivatives are larger on the transformed problem⇒ larger bounds

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 13 / 47



Background and motivation

Why not transforming the problem to get uniform distributions?

Example with X1,X2 i.i.d. N (0,1) truncated on I = [−b,b]

f (X1,X2) = X1 + X2 g(U1,U2) = F−1
X (U1) + F−1

X (U2)

Xi

f(
X

)

−b b Ui

g(
U

)

0 1−
b

b

The Sobol indices of f and g are the same

Difference on optimal upper bounds computed with DGSM

µ(I) ST Upper bound with DGSM Upper bound with DGSM
Original problem (with f) Transformed problem (with g)

1 0.5 0.5 +∞
0.95 0.5 0.52 1.48
0.75 0.5 0.56 1.00

The derivatives are larger on the transformed problem⇒ larger bounds
O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 13 / 47



Background and motivation

1D Poincaré constants: Known results

pdf Support CP(µ) fopt(x)
Uniform [a,b] (b − a)2/π2 cos

(
π(x−a)

b−a

)
N (m, s2) R s2 x −m

[rn,i , rn,i+1] (*) 1/(n + 1) Hn+1(x)

Double exp. e−|x|dx/2 R 4 ×
Logistic ex

(1+ex )2 dx R 4 ×

(*) Hn is the Hermite polynomial of degree n, and rn,1, . . . , rn,n its zeros.
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Background and motivation

Summary and aim

1 Sobol indices and DGSM are linked by Poincaré-type inequalities

DT
i ≤ C(µi )νi Dsuper

i,j ≤ C(µi )C(µj )νi,j

2 DGSM are easier to compute but Sobol indices are more interpretable
⇒ DGSM may allow doing low-cost screening based on Sobol indices

3 The aim: To look for the exact Poincaré constants
for distributions met in practice:

I Frequently: Uniform – (truncated) Gaussian – Triangular – (truncated)
lognormal – Exponential – (truncated) Weibull – (truncated) Gumbel

I Less frequently: (Inverse) Gamma – Beta – Trapezoidal – Generalized
Extreme Value
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Background and motivation

Outline

1 Theory for optimal inequalities

2 Semi-analytical results

3 A numerical method

4 Applications
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Part II

Theory for optimal inequalities

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 17 / 47



Spectral interpretation

Mathematical setting

Definitions and assumptions

Ω: an open interval (a,b) of R (possibly unbounded)
µ(dt) = ρ(t)dt : A continuous measure supported by Ω.

ρ > 0 on Ω, continuous on Ω and piecewise C1 on Ω.
f ′: weak derivative of f , i.e. s.t. for all φ of class C∞ with compact support∫

Ω

f (t)φ′(t)dt = −
∫

Ω

f ′(t)φ(t)dt .

Sobolev spaces
I H1

µ(Ω) = {f ∈ L2(µ) such that f ′ ∈ L2(µ)}
I H`µ(Ω) = {f ∈ L2(µ) such that for all k ≤ `, f (k) ∈ L2(µ)}
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Spectral interpretation

Mathematical setting

When weighted Sobolev spaces collapse to usual Sobolev spaces

Assume that µ is a bounded perturbation of U(Ω), i.e. 0 < m < ρ(t) < M.
Then:

L2(µ) = L2(U(Ω)) H`µ(Ω) = H`U(Ω)(Ω)

with equivalent norms.
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Spectral interpretation

Poincaré inequality and Rayleigh ratio

Rayleigh ratio

For f ∈ H1
µ(Ω):

J(f ) =

∫
Ω

f ′2dµ∫
Ω

f 2dµ
=
‖f ′‖2

‖f‖2

Finding the Poincaré constant is equivalent to:

min
f∈H1

µ(Ω)
J(f ) s.t .

∫
Ω

f dµ = 0

and CP(µ) denotes the inverse of the minimum.
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Spectral interpretation

Optimizing a Rayleigh ratio in finite dimensions

Exercice!
Let A a positive definite matrix on Rn. Find:

min
x∈Rn

‖x‖2
A

‖x‖2

with ‖x‖2
A = xT Ax

Solution. A is diagonalisable in an orthonormal basis uk :

Auk = λk uk

with λ1 ≥ · · · ≥ λn > 0.
Expand x in the basis: x =

∑
xk uk , then Ax =

∑
λk xk uk :

‖x‖2
A

‖x‖2 =

∑
λk x2

k∑
x2

k
≥ λ1

with equality if x = u1.
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Spectral interpretation

Spectral interpretation and link to a 2nd-order differential equation

Theorem (Synthesis from [Bobkov and Götze, 2009] and
[Dautray and Lions, 1990])

Assume that Ω = (a,b) is bounded, and that ρ(t) = e−V (t) > 0 on Ω = [a,b].
A minimizer f of the Rayleigh ratio is obtained by solving

Lf := f ′′ − V ′f ′ = −λf with f ′(a) = f ′(b) = 0

when λ =: λ(µ) is the smallest possible value, called spectral gap.
Furthermore, λ(µ) is a simple eigenvalue and f is strictly monotone.

Ideas for the proof. Show the connections between the three problems

P1 Find f ∈ H1
µ(Ω) s.t. J(f ) = ‖f ′‖2

‖f‖2 is minimum under
∫

fdµ = 0

P2 Find f ∈ H1
µ(Ω) s.t. 〈f ′,g′〉 = λ〈f ,g〉 ∀g ∈ H1

µ(Ω)

P3 Find f ∈ H2
µ(Ω) s.t. f ′′ − V ′f ′ = −λf and f ′(a) = f ′(b) = 0
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Spectral interpretation

Spectral interpretation and link to a 2nd-order differential equation

(P1) ⇐⇒ (P2) (for the smallest positive λ). Start from (P2):

〈f ′,g′〉 = λ〈f ,g〉 ∀g ∈ H1
µ(Ω)

Up to a switch in order to make coercive the left side, we can ’diagonalize’:
there exists a Hilbert basis (uk )k≥0 and an increasing sequence (λk )k≥0 of
positive numbers that tends to infinity such that:

〈u′k ,g′〉 = λk 〈uk ,g〉 ∀g ∈ H1
µ(Ω)

Remark that:
λk = 0 ⇐⇒ k = 0, and u0 = 1∫

fdµ = 0 ⇐⇒ 〈f ,1〉 = 0
Thus f is written: f =

∑
k≥1 fk uk . Finally,

J(f ) =
‖f ′‖2

‖f‖2 =

∑+∞
k=1 λk f 2

k∑+∞
k=1 f 2

k

≥ λ1 > 0

with equality iff f ∈ Ru1.
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Spectral interpretation

Spectral interpretation and link to a 2nd-order differential equation

(P2) ⇐⇒ (P3) Formally the link comes from an integration by part (IPP):

〈f ′,g′〉 =

∫ b

a
f ′g′ρ = [(f ′ρ)g]ba −

∫ b

a
(f ′ρ)′g

λ〈f ,g〉 = λ

∫ b

a
fgρ = −

∫ b

a
(λfρ)g

Thus the two are equal for all g ∈ H1
µ(Ω) iff:

f ′(a) = f ′(b) = 0 (since ρ > 0)
(f ′ρ)′ = −λfρ, i.e. (f ′′ − V ′f ′)ρ = −λfρ

This proves (P2)⇐ (P3), since f is regular enough (IPP is valid).
Conversely, an argument of regularity is necessary. One can show that
if f is solution of (P2), then (f ′ρ) is of class C1, and more precisely:

f ′(x) =
λ

ρ(x)

∫ b

x
f (t)ρ(t)dt .

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 24 / 47



Spectral interpretation

Spectral interpretation and link to a 2nd-order differential equation

(P2) ⇐⇒ (P3) Formally the link comes from an integration by part (IPP):

〈f ′,g′〉 =

∫ b

a
f ′g′ρ = [(f ′ρ)g]ba −

∫ b

a
(f ′ρ)′g

λ〈f ,g〉 = λ

∫ b

a
fgρ = −

∫ b

a
(λfρ)g

Thus the two are equal for all g ∈ H1
µ(Ω) iff:

f ′(a) = f ′(b) = 0 (since ρ > 0)
(f ′ρ)′ = −λfρ, i.e. (f ′′ − V ′f ′)ρ = −λfρ

This proves (P2)⇐ (P3), since f is regular enough (IPP is valid).
Conversely, an argument of regularity is necessary. One can show that
if f is solution of (P2), then (f ′ρ) is of class C1, and more precisely:

f ′(x) =
λ

ρ(x)

∫ b

x
f (t)ρ(t)dt .

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 24 / 47



Spectral interpretation

Spectral interpretation and link to a 2nd-order differential equation

(P2) ⇐⇒ (P3) Formally the link comes from an integration by part (IPP):

〈f ′,g′〉 =

∫ b

a
f ′g′ρ = [(f ′ρ)g]ba −

∫ b

a
(f ′ρ)′g

λ〈f ,g〉 = λ

∫ b

a
fgρ = −

∫ b

a
(λfρ)g

Thus the two are equal for all g ∈ H1
µ(Ω) iff:

f ′(a) = f ′(b) = 0 (since ρ > 0)
(f ′ρ)′ = −λfρ, i.e. (f ′′ − V ′f ′)ρ = −λfρ

This proves (P2)⇐ (P3), since f is regular enough (IPP is valid).
Conversely, an argument of regularity is necessary. One can show that
if f is solution of (P2), then (f ′ρ) is of class C1, and more precisely:

f ′(x) =
λ

ρ(x)

∫ b

x
f (t)ρ(t)dt .

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 24 / 47



Spectral interpretation

Spectral interpretation and link to a 2nd-order differential equation

(P2) ⇐⇒ (P3) Formally the link comes from an integration by part (IPP):

〈f ′,g′〉 =

∫ b

a
f ′g′ρ = [(f ′ρ)g]ba −

∫ b

a
(f ′ρ)′g

λ〈f ,g〉 = λ

∫ b

a
fgρ = −

∫ b

a
(λfρ)g

Thus the two are equal for all g ∈ H1
µ(Ω) iff:

f ′(a) = f ′(b) = 0 (since ρ > 0)
(f ′ρ)′ = −λfρ, i.e. (f ′′ − V ′f ′)ρ = −λfρ

This proves (P2)⇐ (P3), since f is regular enough (IPP is valid).
Conversely, an argument of regularity is necessary. One can show that
if f is solution of (P2), then (f ′ρ) is of class C1, and more precisely:

f ′(x) =
λ

ρ(x)

∫ b

x
f (t)ρ(t)dt .

O. Roustant, F. Barthe & B. Iooss (EMSE, IMT, EDF) Poincaré inequalities revisited for dimension reduction ISFA – 10 March 2017, Lyon 24 / 47



Spectral interpretation

Spectral interpretation and link to a 2nd-order differential equation

Neumann and Dirichlet spectral gaps

If f is enough derivable, finding f ↑ of the Neumann spectral problem

Lf := f ′′ − V ′f ′ = −λf , f ′(a) = f ′(b) = 0

is equivalent to finding g > 0 of the Dirichlet spectral problem

Kg := g′′ − V ′g′−V ′′g = −λg, g(a) = g(b) = 0

Main idea. Consider g = f ′

(Lf )′ = f ′′′ − V ′f ′′−V ′′f ′ = −λf ′ f ′(a) = f ′(b) = 0
m m

Kg = g′′ − V ′g′ − V ′′g = −λg g(a) = g(b) = 0
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Spectral interpretation

Other useful properties: Optimal constants on intervals

1 Monotonicity with respect to the interval

I ⊆ J ⇒ CP(µ|I) ≤ CP(µ|J)

2 Continuity with respect to the support

Iε ↑ I ⇒ CP(µ|Iε)→ CP(µ|I)

Consequence.
We can assume that Ω = (a,b) is bounded and that ρ does not vanish on Ω.
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Spectral interpretation

Other useful properties: Optimal constants on intervals

Sketch of proof for monotonicity.
For f ∈ H1(µ|I), extend it on J with a constant outside I. This is f̃ .

Varµ|I (f ) = inf
a

∫
I
(f − a)2 dµ

µ(I)

≤ inf
a

∫
J
(f̃ − a)2 dµ

µ(I)
≤ CP(µ)

∫
J
(f̃ ′)2 dµ

µ(I)
= CP(µ)

∫
I
(f ′)2dµ|I .

Sketch of proof for continuity.

From monotonicity, CP(µ|Iε) ≤ CP(µ|I)

Then, choose f ∈ H1(µ|I), and check with Lebesgue theorem that:

Varµ|I (f )∫
Ω

f ′2dµ|I
= lim
ε→0

Varµ|Iε (f )∫
Iε

f ′2dµ|Iε
≤ lim
ε→0

CP(µ|Iε)
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Spectral interpretation

Properties for symmetric measures on symmetric intervals

Let I = (−a,a) be a symmetric interval, and µ an even measure on R.

1 Improved result for monotonicity

CP(µ|I) ≤ µ(I)2CP(µ)

2 Symmetry and odd functions

The infemum of the Rayleigh ratio on I can be found among odd functions
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Part III

Semi-analytical results
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Semi-analytical results

An example: The truncated normal distribution

Poincaré constant of the truncated Normal distribution
Define:

h0(λ, t) = M 1−λ
2 ; 1

2

(
t2

2

)
h1(λ, t) = M 2−λ

2 ; 3
2

(
t2

2

)
where the so-called Kummer’s function Ma1,b1 (z) = 1F1 (a1; b1; z) is an
example of hypergeometric series

∑
p≥0 xp satisfying

xp+1

xp
=

(p + a1)z
(p + b1)(p + 1)

, x0 = 1

Notice that h0 and h1 generalize Hermite polynomials: When λ is an odd
(resp. even) positive integer, then t 7→ h0(λ, t) (resp. t 7→ t .h1(λ, t)) is
proportional to the Hermite polynomial of degree λ− 1.
Then the spectral gap of N (0,1)|[a,b] is the first zero of the function

d(.) = bh0(.,a)h1(.,b)− ah0(.,b)h1(.,a)
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Semi-analytical results

Sketch of proof. Consider the Dirichlet problem

g′′ − t g′ = −(λ− 1)g, g(a) = g(b) = 0

Look for a series expansion g(t) =
∑

n≥0 cntn ⇒ cn+2 = n−(λ−1)
(n+1)(n+2) cn.

Split g into even an odd part, g(t) = g0(t) + t .g1(t). Then:

g(t) = c0h0(λ, t) + c1t .h1(λ, t)

Now, g(a) = g(b) = 0 lead to the linear system Xc = 0, with:

X =

(
h0(λ,a) ah1(λ,a)
h0(λ,b) bh1(λ,b)

)
c =

(
c0
c1

)
This system must be singular, otherwise g would be identically zero.
Thus det(X ) = 0, leading to d(λ) = 0.
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Semi-analytical results

Truncated normal distribution – Symmetric case: I = [-b,b]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ(I)

µ(I)2

Copt

σI
2

Figure: Poincaré constant of µ = N (0, 1) truncated on I = [−b, b], vs µ(I)

σ2
I : variance of the truncated normal on I – Black points: Hermite polynomials of even degree.
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Semi-analytical results

Truncated normal distribution – General case

Φ(a)

1
−

Φ
(b

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure: Poincaré constant of N (0, 1) truncated on I = [a, b].

Colored points: Hermite polynomials (up to degree 100).
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Semi-analytical results

Summary: General methodology for finding optimal constants on [a,b]

1 Consider the spectral problem f ′′ − V ′f ′ = −λf f ′(a) = f ′(b) = 0
2 Find a basis of 2 independent solutions f1,λ(t), f2,λ(t)
3 The Neumann conditions lead to a singular linear system(

f ′1,λ(a) f ′2,λ(a)

f ′1,λ(b) f ′2,λ(b)

)(
c1
c2

)
=

(
0
0

)
λ = 1/Copt is then the first zero of: λ 7→ f ′1,λ(a)f ′2,λ(b)− f ′1,λ(b)f ′2,λ(a)

Variants.
Dirichlet problem (ex: Truncated Gaussian)
Symmetry (ex: Triangular)
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Semi-analytical results

1D Poincaré constants: Additional results

pdf Support Copt Form of fopt(x)
Uniform [a,b] (b − a)2/π2 cos

(
π(x−a)

b−a

)
N (µ, σ2) R σ2 x − µ

[rn,i , rn,i+1] 1/(n + 1) Hn+1(x)
[a,b] see before related to Kummer

Db. exp. e−|x|dx/2 R 4 ×
(*) [a,b],ab > 0

( 1
4 + ω2

)−1
ex/2 cos(ωx + φ)

(*, **) [a,b],ab ≤ 0 >
( 1

4 + ω2
)−1

e|x|/2× trig. spline
Logistic ex

(1+ex )2 dx R 4 ×
Triangular [−1,1] ≈ 0.1729 linked to Bessel J0

(*) For the truncated Exponential on [a,b] ⊆ R+, we use ω = π/(b − a)
(**) If a < 0 < b, the spectral gap is the zero in ]0,min(π/|a|, π/|b|)[ of
x 7→ cotan(|a|x) + cotan(|b|x) + 1/x
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Part IV

A numerical method
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A numerical method

Principle: Finite elements

0 h

g0

1(n−1)h

gn

(i−1)h ih (i+1)h

gi

(i+2)h

gi+1

... ...

Figure: Basis of finite elements P1 on [0, 1]. The gi ’s are hat functions for
i = 1, . . . , n − 1, truncated at the boundaries (i = 0 and i = n).
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A numerical method

Principle: Finite elements

The idea is to solve numerically the spectral problem (P2)

〈f ′,g′〉 = λ〈f ,g〉 ∀g ∈ H1
µ(Ω)

Solutions are obtained as the limit of solutions in the finite dim. space P1.

In P1, the problem is to find fh ∈ Rn+1 such that

Khfh = λMhfh

with: Kh = (〈g′i ,g′j 〉)0≤i,j≤n and Mh = (〈gi ,gj〉)0≤i,j≤n.

Using the Choleski dec. of Mh = LhLT
h , we obtain an eigenvalues problem

K̃h f̃h = λf̃h

with K̃h = L−1
h Kh(LT

h )−1 and f̃h = LT
h fh.
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A numerical method

Convergence properties

Proposition

Assume that Ω is bounded and ρ > 0 on Ω.
Consider the solutions of the spectral problem in P1,

0 = λ0,h ≤ λ1,h ≤ · · · ≤ λn,h

and u0,h,u1,h, . . . ,un,h. corr. eigenvectors. Let ` ≥ 1 s.t. fopt ∈ H`+1
µ (Ω). Then:

|λ1,h − λ(µ)| = O(h2`), |u1,h − fopt| = O(h`)

Proof. If µ = U(Ω), the result comes from theory on finite elements (see e.g.
[Raviart and Thomas, 1988]), as all eigenvalues are simple.
This also applies under the assumptions above since µ is a bounded
perturbation of U(Ω): 0 < m < ρ(t) < M.
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Part V

Applications
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Applications

Come-back to the case study

Q Ks Zv Zm Hd Cb L B

Db. exp transport
Optimal bound
Total Sobol index
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Applications

Application on a 1D hydraulic model

Mascaret simulator on Vienne river (Saint Venant Lab.)
d = 37 random inputs (uniform and truncated Gaussian)
Output: The water level at a specific river location
Adjoint model gives derivatives (cost independent of d) and DGSM
[Petit et al., 2016]
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Applications

Application on a 1D hydraulic model

Study with n = 20,000 on 5 inputs previously identified as active

Inputs K 11
s,c K 12

s,c dZ 11 dZ 12 Q
µ U U T N T N T N

ST 0.456 0.0159 0.293 0.015 0.239
(2e−3) (1e−4) (1e−3) (1e−4) (1e−3)
By double exponential transport

Upper bound - - 1.844 0.116 1.504
- - (2e−3) (2e−3) (1.5e−2)

By logistic transport
Upper bound - - 0.461 0.028 0.376

- - (4e−3) (5e−4) (4e−3)
Optimal Poincaré constant

Optimal bound 0.625 0.029 0.288 0.017 0.235
(2e−4) (1e−5) (3e−3) (3e−4) (2e−3)
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Part VI

Conclusion
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Conclusions

Conclusions

1 DGSM allow doing low-cost screening based on Sobol indices
⇒Will work if the function is not varying too quickly

2 CP(µ) can be computed semi-analytically for simple distributions,
e.g. in blue in our initial list:

I Frequently: Uniform – (truncated) Gaussian – Triangular – (truncated)
lognormal – truncated Exp. – (truncated) Weibull – (truncated) Gumbel

I Less frequently: (Inverse) Gamma – Beta – Trapezoidal – Generalized
Extreme Value

3 CP(µ) can be computed numerically with finite elements.

See more details on our preprint
https://hal.archives-ouvertes.fr/hal-01388758
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