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Introduction

» Richer data has tempted us to consider more elaborate models

Elaborate models = More factors / variables

» Generalization has become a lot more challenging

» Regularization has been useful in avoiding overfitting

Goal: A distributionally robust approach for

improving generalization
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Motivation for Distributionally robust optimization

» Want to solve the stochastic optimization problem
mﬁgn E [Loss(X, B)]

» Typically, we have access to the probability distribution of X
only via its samples {Xi,..., X}

» A common practice is to instead solve

1 n
min — Loss(X;,
in z; (X, 5)
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min 1 Z Loss(X;,3) as a proxy for minE [Loss(X, B)]
5 on 5
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Learning
Natural to be thought as finding the “best” f such that
yi:f(xi)+eia i:l,...,n

Xj = (x1,...,xq) is the vector of predictors

y; is the corresponding response

?Image source: r-bloggers.com



Learning
Natural to be thought as finding the “best” f such that

y;:f(x;)+e;, i=1,...,n

Empirical loss/risk minimization (ERM):

1 n
- Z Loss(f(x;), yi)
i=1
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Learning
Natural to be thought as finding the “best” f such that

y;:f(x;)+e;, i=1,...,n

Empirical loss/risk minimization (ERM):
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Learning
Natural to be thought as finding the “best” f such that

y,-zf(x,-)+e;, i=1,...,n

?Image source: r-bloggers.com

Not enough
Find an f that fits well over “future” values as well
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Generalization

Think of data (x1,y1),...(Xn, ¥n) as samples from a probability
distribution P

Then “future values” can also be interpreted as samples from P
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Generalization

Think of data (x1,y1),...(Xn, ¥n) as samples from a probability
distribution P

Then “future values” can also be interpreted as samples from P

mfin % Z Loss(f(x;),yi) +— mfin Ep [Loss(f(X), Y)]
i=1

However, the access to P is still via samples, P, = %Z,’-’:l YA
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Want to solve jr(rg.g_ Ep [Loss(f(X),Y)]

P unknown
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Know how to solve ?%I;]: Ep, [Loss(f(X), Y)]

Access to P via training samples P,
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More and more samples give better approximation to P,

however, the quality of this approximation depends on dim
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We are provided with only limited training data (n samples)

Sometimes, to an extent that even n < dim of the parameter of interest.
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Instead of finding the best fit with respect to P,,
why not find a fit that works over all @ such that D(Q,P,) <§
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Formally,

;nei2_ Q:D(rg?é)g Eq [Loss(f(X),Y)]
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DR Regression:

min max
feF Q:D(Q,Pn)<d

Eq [Loss(f(X), Y)]
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DR Linear Regression:

min max
BERY Q:D(Q,Pn)<é

Eq [(v = 87X)7]
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DR Linear Regression: min max Eo [(Y _ BTX)2]
BERY Q:D(Q,Pn)<o

I. Are these DR regression problems solvable?

» If so, how do they compare with known methods for improving

generalization?

Il. How to beat the curse of dimensionality while choosing §7

» Robust Wasserstein profile function

[1l. Does the framework scale?
» Support vector machines
> Logistic regression
» General sample average approximation



DR Linear Regression: .
min max

BeRY Q:D(Q,Pn)<é

Eq [(Y - 5TX)2}

How to quantify the distance D(P, Q)?

/18



DR Linear Regression: min max Eo [(Y B 5TX)2}
BER? Q:D(Q,Pn)<4é

How to quantify the distance D(P, Q)?

Ans:

Let (U, V) be two random variables such that U ~ P and V ~ Q.
Let us call a joint distribution (U, V) as 7. Then

D(P, Q) = inf E;||U — V||
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DR Li ion: .
R Linear Regression min ax Fo [(Y B ,BTX)ﬂ
BeRY Q:D(Q,Pp)<d

Ed

) remblais

déblais 1

v

How to quantify the distance D(P, Q)?

Ans:

Let (U, V) be two random variables such that U ~ P and V ~ Q.
Let us call a joint distribution (U, V) as 7. Then

D(P, Q) = inf E;||U — V||

!Image from the book Optimal Transport: Old and New by Cédric Villani
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DR Linear Regression: min max Eo [(Y B ,BTX)ﬂ
BERY Q:Dc(Q,Pn)<é

T

déblais

Yy

remblais

How to quantify the distance D(P, Q)?

Ans:

Let (U, V) be two random variables such that U ~ P and V ~ Q.
Let us call a joint distribution (U, V) as 7. Then

De(P, Q) = inf Ex [c(U, V)]

The metric D, is called optimal transport metric.

When c(u,v) = |ju—v|", DY/* is the pth order Wasserstein distance
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DR Linear Regression:

Next, how do we choose §7

min max
BERY Q:Dc(Q,Pn)<é

Eo [(Y—ﬁTxﬂ
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DR Linear Regression: min max Eo [(Y _ BTX)z}
,BGIR" Q3DC(Q7PH)§6

Next, how do we choose §7

See Fournier and Guillin (2015), Lee and Mehrotra (2013),
Shafieezadeh-Abadeh, Esfahani and Kuhn (2015)



DR Linear Regression:

The object of interest 3,
satisfies:

min max
BERd QDC(C’,Pn)S(s

Eo [(Y—ﬂTx)ﬂ

Er[(Y - BIX)X] =0
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DR Linear Regression: min max Eo [(Y B 5TX)2}
BERY Q:Dc(Q,Pn)<é

The object of interest 3,
satisfies:

Er[(Y - BIX)X] =0

Ra(B.) = min {DC(Q, P,) i Eq [(Y — BIX)X] = o}



DR Linear Regression:

min max
BERd QDC(C’,Pn)S(s

Eo [(Y—ﬂTx)ﬂ

Theorem 1
[Blanchet, Kang & M]
If Y =8TX+e,

nRa(B.) = L

Ra(B.) = min {DC(Q, P,) i Eq [(Y — BIX)X] = o}




DR Linear Regression:

min max
BERd QDC(C’,Pn)S(s

Eo [(Y—ﬂTx)ﬂ

Theorem 1
[Blanchet, Kang & M]
If Y =8TX+e,

nRa(B.) = L

Choose § = i where 7 is such that P {£ < n} > 0.95
n
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DR Linear Regression: min max Eo [(Y B 5TX)2}
BERY Q:Dc(Q,Pn)<é

Theorem 1
[Blanchet, Kang & M]
If Y =8TX+e,

nRa(By) - L

Choose § = 177& where 7, is such that P{L <1n,} >1—a.
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Robust
Wasserstein
profile

function:

Ra(3) = min {DC(Q, Po) : Eq[(Y = 87X)x| =0
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Robust
Wasserstein
profile R(8) = min {DC(Q, Po): Eo (Y - 8TX)X]| =0
function:
p(z,y)

PTL

o
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Robust
Wasserstein
profile R(8) = min {DC(Q, Po): Eo (Y - 8TX)X]| =0
function:
p(z,y)

PTL PTL
I\

Ol
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Robust
Wasserstein
profile R,(B3) = min {DC(Q, P,) : Eq [(Y - ﬂTX)X} =0
function:
p(z,y)

D(JG’TL-, Pn) = Rn(ﬁ)

I\

Ol
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Robust
Wasserstein
profile RA(8) = min {DC(Q, P,) : Eq [(Y - 6TX)X} =0

function:

Pz, y)
> Basically, R,(5) is a measure
of goodness of 3
Dc(Pn-, ]5”) = RH(B)
L, ifp=70

nR,(8) — {
oo, if B# B

> Similar to empirical likelihood

I 7 profile function

> In high-dimensional setting,
one can instead consider
suitable non-asymptotic
bounds for nR,(5).



RWPI Linear .
min max Eg [(Y—BTX)ﬂ
Regression: BERY Q:Dc(Q,Pn)<o

e worst-case loss ————— —

Theorem 2 [Blanchet, Kang & M]

If we take c(u,v) = ||u—v|%,

Worst-case loss = (\/ MSE,(5) + \/5||5||1>2

Recall D.(P, Q) = ir;f {Eﬂ [c(U, V)] im, =P, = Q}
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RWPI Linear .
min max Eg [(Y—ﬁTX)ﬂ
Regression: BERY Q:Dc(Q,Pn)<o

e worst-case loss ————— —

Theorem 2 [Blanchet, Kang & M]

If we take c(u,v) = ||u—v|%,

Worst-case loss = (\/ MSE,(5) + \/3||5||1>2

=— RWAPI-Regression = Generalized Lasso!
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RWPI Linear .
min

max E [Y— X 2}
Regression: BeR? Q:Dc(Q,Pn)<d ? ( B )

— worst-case loss

Theorem 2 [Blanchet, Kang & M]

If we take c(u,v) = [lu—v|]2,

Worst-case loss = (\/ MSE,(8) + \/S‘lﬂup)z

= RWHPI-Regression(q) = {,-Penalized regression
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RWPI Linear .
min max Eg [(Y—ﬁTX)ﬂ
Regression: BERY Q:Dc(Q,Pn)<o

e worst-case loss ————— —

Theorem 2 [Blanchet, Kang & M]

If we take c(u,v) = [lu—v|]2,

Worst-case loss = (\/ MSE,(8) + \/S‘lﬂup)z

A prescription for § = A prescription for regularization parameter
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RWPI Linear

min max EQ‘Y—BTX\
Regression: BERY  Q:Dc(Q,Pp)<é
e worst-case loss —————

Theorem 3 [Blanchet, Kang & M]

If we take c(u,v) = |u—v|q,

1< -
Worst-case loss = - ;D’, — BTXi|+ 618l

=—> RWHPI linear regression with LAD loss = LAD - Lasso
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RWPI Logisti .
ogiEtie min max  Eg [Iog (1+ exp(—YﬂTX))]
Regression: BERY Q:Dc(Q,Pn)<d

e worst-case loss ————— —

Theorem 3 [Blanchet, Kang & M]

If we take c(u,v) = [lu—v|]2,

Worst-case loss = % Z log (14 exp(—YiB" X)) + 61|8]l,

i=1

= RWHPI logistic regression = Penalized logistic regression
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RWPI Hinge-loss .
min

max Eg [(1 - YﬂTX)JF}

minimization: BER? Q:Dc(Q,Pn)<d

— worst-case loss

Theorem 4 [Blanchet, Kang & M]

If we take c(u,v) = [lu—v|]2,

N 1 - T +
Worst-case loss = — > (@-VviBTX)" +61Bll,

i=1

= RWPI Hinge loss minimization = SVM
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Robust SAA: min oK s Eq [Loss(X, )]

4————— worst-case loss —————

Theorem 5 [Blanchet, Kang & M]

If we let c(u,v) = |lu— v||3 and h(x, B) = Dgloss(x, 8),

Ry (B.) = €TATY,

where & ~ N(0, Cov[h(X, 3,)]) and
A= E [Dyh(X, B.)Deh(X, 5.)T] .

/18



RWPI Linear

Regression:

. AT 2
min  max Eq (Y~ BTX)’

= inf (V/MSE,(3) + V[ 8l1)

BERY

A prescription for § = A prescription for regularization parameter
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RWPI Linear

Regression: min max Eq [(y _ 5TX)2]
BERY Q:D(Q,Pn)<s

= inf (V/MSE,(3) + V[ 8l1)

BERY

A prescription for § = A prescription for regularization parameter

» Recall that we chose § such that
P{R:(8:) <0} > 1 -«

» If X have sub-gaussian tails then, the corresponding prescription of

tuning parameter turns out to be

¢—1(1\/—Ea/2d) _ o( Iogd)

n

C
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Concluding remarks

Distributional robustness

Viewing regularization under the lens of distributional

robustness
Applications to stochastic optimization

Additional learning applications where regularization structure

may not be clear?....
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RWPI Linear

Regression: min max

BeRY Q:D(Q,P,)<6 Eq {(Y B X) }

Model: Y = 3X1 + 2X2 + 15X4 + e,
X ~N(0,X), &, =05k e~ N(0,1)
n = 100 training samples of (X, Y)

d | RWPI Cross Validation (log d/n)*/?
10 | 3(3) 8 (3) 4 (3)
500 | 3(3) 10 (3) 6 (3)

1000 | 3 (3) 19 (3) 11 (3)

3000 | 3 (3) 55 (3) 17 (3)

Table: Performance of different choices of regularization parameters for

generalized Lasso.
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