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Introduction

I Richer data has tempted us to consider more elaborate models

Elaborate models =⇒ More factors / variables

I Generalization has become a lot more challenging

I Regularization has been useful in avoiding overfitting

Goal: A distributionally robust approach for

improving generalization
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Motivation for Distributionally robust optimization

I Want to solve the stochastic optimization problem

min
β

E
[
Loss

(
X , β)

]

I Typically, we have access to the probability distribution of X

only via its samples {X1, . . . ,Xn}

I A common practice is to instead solve

min
β

1

n

n∑

i=1

Loss(Xi , β)
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Learning

Natural to be thought as finding the “best” f such that

yi = f (xi ) + ei , i = 1, . . . , n

xi = (x1, . . . , xd) is the vector of predictors

yi is the corresponding response

Empirical loss/risk minimization (ERM):

1

n

n∑

i=1

Loss
(
f (xi ), yi

)

=
1

n

n∑

i=1

(
yi − f (xi )

2
)

a

aImage source: r-bloggers.com

Not enough

Find an f that fits well over “future” values as well

4 / 18



Learning

Natural to be thought as finding the “best” f such that

yi = f (xi ) + ei , i = 1, . . . , n

xi = (x1, . . . , xd) is the vector of predictors

yi is the corresponding response

Empirical loss/risk minimization (ERM):

1

n

n∑

i=1

Loss
(
f (xi ), yi

)

=
1

n

n∑

i=1

(
yi − f (xi )

2
)

a

aImage source: r-bloggers.com

Not enough

Find an f that fits well over “future” values as well

4 / 18



Learning

Natural to be thought as finding the “best” f such that

yi = f (xi ) + ei , i = 1, . . . , n

xi = (x1, . . . , xd) is the vector of predictors

yi is the corresponding response

Empirical loss/risk minimization (ERM):

1

n

n∑

i=1

Loss
(
f (xi ), yi

)

=
1

n

n∑

i=1

(
yi − f (xi )

2
) a

aImage source: r-bloggers.com

Not enough

Find an f that fits well over “future” values as well

4 / 18



Learning

Natural to be thought as finding the “best” f such that

yi = f (xi ) + ei , i = 1, . . . , n

xi = (x1, . . . , xd) is the vector of predictors

yi is the corresponding response
Empirical loss/risk minimization (ERM):

1

n

n∑

i=1

Loss
(
f (xi ), yi

)

=
1

n

n∑

i=1

(
yi − f (xi )

2
)

a

aImage source: r-bloggers.com

Not enough

Find an f that fits well over “future” values as well

4 / 18



Generalization

Think of data (x1, y1), . . . (xn, yn) as samples from a probability

distribution P

Then “future values” can also be interpreted as samples from P

min
f

1

n

n∑

i=1

Loss
(
f (xi ), yi

)
7−→ min

f
EP

[
Loss

(
f (X ),Y )

]

However, the access to P is still via samples, Pn = 1
n

∑n
i=1 δ(xi ,yi )
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P

Want to solve min
f∈F

EP

[
Loss

(
f (X ),Y

)]

P unknown
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P

Pn

Know how to solve min
f∈F

EPn

[
Loss

(
f (X ),Y

)]

Access to P via training samples Pn
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P

Pn

More and more samples give better approximation to P,

however, the quality of this approximation depends on dim
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P

Pn

We are provided with only limited training data (n samples)

Sometimes, to an extent that even n < dim of the parameter of interest.
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P

Pn

δ

Instead of finding the best fit with respect to Pn,

why not find a fit that works over all Q such that D(Q,Pn) ≤ δ
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P

Pn

δ

Formally,

min
f∈F

max
Q:D(Q,Pn)≤δ

EQ

[
Loss

(
f (X ),Y

)]
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DR Regression:
min
f ∈F

max
Q:D(Q,Pn)≤δ

EQ

[
Loss

(
f (X ),Y

)]

I. Are these DR regression problems solvable?

I If so, how do they compare with known methods for improving

generalization?

II. How to beat the curse of dimensionality while choosing δ?

I Robust Wasserstein profile function

III. Does the framework scale?

I Support vector machines

I Logistic regression

I General sample average approximation
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EQ

[(
Y − βTX

)2]

3

The founding fathers of optimal transport

As many other research subjects in mathematics, the field of optimal transport was born
several times. The first of these births occurred at the end of the eighteenth century, by
ways of the French geometer Gaspard Monge.

Monge was born in 1746 under the French Ancient Régime. Because of his outstanding
skills, military authorities tolerated him in a military training school from which he should
have been excluded by his modest origin. He invented descriptive geometry all by his own,
and the power of the method was so apparent that he was appointed professor at the
age of 22, with the understanding that his theory would remain a military secret, for
exclusive use of higher officers. He later was one of the most ardent warrior scientists
of the French Revolution, served as a professor under several regimes, escaped a death
sentence pronounced during the Terror, and became one of Napoleon’s closest friends. He
taught at École Normale Supérieure and École Polytechnique in Paris. Most of his work
was devoted to geometry.

In 1781 he published one of his first famous works, Mémoire sur la théorie des déblais et
des remblais (a “déblai” is an amount of material that is extracted from the earth or a mine;
a “remblai” is a material that is input into a new construction). The problem considered
by Monge is as follows: Assume you have a certain amount of soil, to extract from the
ground and transport to places where it should be incorporated in a construction. The
places where the material should be extracted, and the ones where it should be transported
to, are all known. But the assignment has to be determined: To which destination should
one send the material that has been extracted at a certain place? The answer does matter
because transport is costly, and you want to minimize the total cost. Monge assumed that
the transport cost of one unit of mass along a certain distance was given by the product
of the mass by the distance.

déblais
remblais

x

T

y

Fig. 3.1. Monge’s problem of déblais and remblais

How to quantify the distance D(P,Q)?

Ans:

Let (U,V ) be two random variables such that U ∼ P and V ∼ Q.

Let us call a joint distribution (U,V ) as π. Then

D(P,Q) = inf
π
Eπ‖U − V ‖

8 / 18



DR Linear Regression:
min
β∈Rd

max
Q:D(Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

3

The founding fathers of optimal transport

As many other research subjects in mathematics, the field of optimal transport was born
several times. The first of these births occurred at the end of the eighteenth century, by
ways of the French geometer Gaspard Monge.

Monge was born in 1746 under the French Ancient Régime. Because of his outstanding
skills, military authorities tolerated him in a military training school from which he should
have been excluded by his modest origin. He invented descriptive geometry all by his own,
and the power of the method was so apparent that he was appointed professor at the
age of 22, with the understanding that his theory would remain a military secret, for
exclusive use of higher officers. He later was one of the most ardent warrior scientists
of the French Revolution, served as a professor under several regimes, escaped a death
sentence pronounced during the Terror, and became one of Napoleon’s closest friends. He
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1

How to quantify the distance D(P,Q)?

Ans:

Let (U,V ) be two random variables such that U ∼ P and V ∼ Q.

Let us call a joint distribution (U,V ) as π. Then

D(P,Q) = inf
π
Eπ‖U − V ‖

1Image from the book Optimal Transport: Old and New by Cédric Villani
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The metric Dc is called optimal transport metric.

When c(u, v) = ‖u − v‖p,D1/p
c is the pth order Wasserstein distance
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DR Linear Regression:
min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

Next, how do we choose δ?

P

Pn

δ

See Fournier and Guillin (2015), Lee and Mehrotra (2013),

Shafieezadeh-Abadeh, Esfahani and Kuhn (2015)
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DR Linear Regression:
min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

The object of interest β∗

satisfies:

EP

[(
Y − βT

∗ X
)
X
]

= 0

Theorem 1

[Blanchet, Kang & M]

If Y = βT
∗ X + ε,

nRn(β∗)
D−→ L

P

Pn

δ
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where η is such that P {L ≤ η} ≥ 0.95

10 / 18



DR Linear Regression:
min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

The object of interest β∗

satisfies:

EP

[(
Y − βT

∗ X
)
X
]

= 0

Theorem 1

[Blanchet, Kang & M]

If Y = βT
∗ X + ε,

nRn(β∗)
D−→ L

P

Pn

{
Q : EQ

[
(Y − β

T
∗X

)X
]
= 0

}

δ

Choose δ =
ηα
n

where ηα is such that P {L ≤ ηα} ≥ 1− α.
10 / 18



Robust

Wasserstein

profile

function:

Rn(β) = min

{
Dc

(
Q,Pn

)
: EQ

[(
Y − βTX

)
X
]

= 0

}

Pn

y

x

p(x, y)

Pn P̃nDc( , ) = Rn(β)

I Basically, Rn(β) is a measure

of goodness of β

nRn(β) −→




L, if β = β∗

∞, if β 6= β∗

I Similar to empirical likelihood

profile function

I In high-dimensional setting,

one can instead consider

suitable non-asymptotic

bounds for nRn(β).
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RWPI Linear

Regression:
min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

←−−−−− worst-case loss −−−−−→

Theorem 2 [Blanchet, Kang & M]

If we take c(u, v) = ‖u − v‖2∞,

Worst-case loss =
(√

MSEn(β) +
√
δ
∥∥β
∥∥
1

)2

Recall Dc(P,Q) = inf
π

{
Eπ
[
c(U,V )

]
: π

U
= P, π

V
= Q

}
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1

)2

=⇒ RWPI-Regression = Generalized Lasso!
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←−−−−− worst-case loss −−−−−→

Theorem 2 [Blanchet, Kang & M]

If we take c(u, v) = ‖u − v‖2q,

Worst-case loss =
(√

MSEn(β) +
√
δ
∥∥β
∥∥
p

)2

=⇒ RWPI-Regression(q) = `p-Penalized regression
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Regression:
min
β∈Rd

max
Q:Dc (Q,Pn)≤δ
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Theorem 2 [Blanchet, Kang & M]

If we take c(u, v) = ‖u − v‖2q,

Worst-case loss =
(√

MSEn(β) +
√
δ
∥∥β
∥∥
p

)2

A prescription for δ =⇒ A prescription for regularization parameter
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RWPI Linear

Regression:
min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

∣∣Y − βTX |
←−−−−− worst-case loss −−−−−→

Theorem 3 [Blanchet, Kang & M]

If we take c(u, v) = ‖u − v‖q,

Worst-case loss =
1

n

n∑

i=1

|Yi − βTXi

∣∣+ δ‖β‖p

=⇒ RWPI linear regression with LAD loss = LAD - Lasso
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RWPI Logistic

Regression:
min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[
log
(
1 + exp(−Y βTX )

)]

←−−−−− worst-case loss −−−−−→

Theorem 3 [Blanchet, Kang & M]

If we take c(u, v) = ‖u − v‖2q,

Worst-case loss =
1

n

n∑

i=1

log
(
1 + exp(−Yiβ

TXi )
)

+ δ‖β‖p

=⇒ RWPI logistic regression = Penalized logistic regression
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RWPI Hinge-loss

minimization:
min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[(
1− Y βTX

)+]

←−−−−− worst-case loss −−−−−→

Theorem 4 [Blanchet, Kang & M]

If we take c(u, v) = ‖u − v‖2q,

Worst-case loss =
1

n

n∑

i=1

(
1− Yiβ

TXi

)+
+ δ‖β‖p

=⇒ RWPI Hinge loss minimization = SVM
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Robust SAA: min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[
Loss

(
X , β

)]

←−−−− worst-case loss −−−−→

Theorem 5 [Blanchet, Kang & M]

If we let c(u, v) = ‖u − v‖22 and h(x , β) = DβLoss
(
x , β

)
,

Rn (β∗)
D−→ ξTA−1ξ,

where ξ ∼ N (0,Cov[h
(
X , β∗

)
]) and

A = E
[
Dxh(X , β∗)Dxh(X , β∗)

T
]
.
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RWPI Linear

Regression: min
β∈Rd

max
Q:D(Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

= inf
β∈Rd

(√
MSEn(β) +

√
δ‖β‖1

)2

A prescription for δ =⇒ A prescription for regularization parameter

I Recall that we chose δ such that

P {Rn(β∗) ≤ δ} ≥ 1− α

I If X have sub-gaussian tails then, the corresponding prescription of

tuning parameter turns out to be

c
Φ−1 (1− α/2d)√

n
= O

(√
log d

n

)

17 / 18



RWPI Linear

Regression: min
β∈Rd

max
Q:D(Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

= inf
β∈Rd

(√
MSEn(β) +

√
δ‖β‖1

)2

A prescription for δ =⇒ A prescription for regularization parameter

I Recall that we chose δ such that

P {Rn(β∗) ≤ δ} ≥ 1− α

I If X have sub-gaussian tails then, the corresponding prescription of

tuning parameter turns out to be

c
Φ−1 (1− α/2d)√

n
= O

(√
log d

n

)

17 / 18



Concluding remarks

I Distributional robustness

I Viewing regularization under the lens of distributional

robustness

I Applications to stochastic optimization

I Additional learning applications where regularization structure

may not be clear?....
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RWPI Linear

Regression: min
β∈Rd

max
Q:D(Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

Model: Y = 3X1 + 2X2 + 1.5X4 + e,

X ∼ N (0,Σ), Σk,j = 0.5|k−j|, e ∼ N (0, 1)

n = 100 training samples of (X ,Y )

d RWPI Cross Validation (log d/n)1/2

10 3 (3) 8 (3) 4 (3)

500 3 (3) 10 (3) 6 (3)

1000 3 (3) 19 (3) 11 (3)

3000 3 (3) 55 (3) 17 (3)

Table: Performance of different choices of regularization parameters for

generalized Lasso.
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