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Résumé

Queues de distribution des sommes de variables aléatoires à variations régulières:

calculs et simulation.

Cette thèse s’intéresse à l’utilisation de techniques numériques par approximation sous forme

de séries et de techniques de simulation pour l’approximation de la queue de distribution de

sommes de variables aléatoires à variations régulières. Le calcul de la probabilité que la somme

soit plus grande qu’un seuil donné est important en gestion des risques. En particulier, ce calcul

est utilisé pour définir le besoin en capital des sociétés d’assurances ou d’autres institutions

financières.

Le premier chapitre constitue l’introduction de la thèse. Il explique les principaux résultats et

présente les outils mathématiques qui sont développés dans la thèse.

Le second chapitre est basé sur le travail : ”Series expansions for the sum of the independent

Pareto random variables”, article rédigé avec le Professeur Christian ROBERT, directeur de la

thèse. Cet article est soumis à publication. Il propose un algorithme de calcul pour déterminer

la queue de distribution d’une somme de variables aléatoires de type Pareto non nécessairement

équidistribuées. Il propose une approximation sous forme de série de la fonction de survie de la

somme. L’algorithme utilisé pour calculer l’approximation est simple, facile à implémenter, et

offre de très bons résultats numériques.

Le troisième chapitre de cette thèse est basée sur l’article : ”New efficient estimators in rare event

simulation with heavy tails”, publié dans Journal of Computational and Applied Mathematics,

et co-écrit avec le Professeur Christian ROBERT. Il s’intéresse à l’approximation par simulation

de la probabilité que la somme de variables aléatoires indépendantes à variations régulières

soit plus grande qu’un seuil élevé. Des estimateurs efficaces ont déjà été introduits dans la

littérature associée à la simulation d’événements rares. Nous proposons de nouvelles techniques

de simulation qui sont plus efficaces que les méthodes précédemment proposées.

Le quatrième chapitre poursuit l’analyse de la simulation d’événements rares du type ”la somme

est plus grande qu’un seuil”, mais cette fois-ci il s’intéresse à des situations où les variables

aléatoires sont dépendantes. Il se focalise sur le cas où la dépendance est donnée par une

copule archimédienne. Ce chapitre est basé sur l’article en relecture : ”Efficient simulation of

tail probabilities of sums with heavy tailed random variables and Archimedean copulas”. Les

équivalents asymptotiques de la probabilité de dépassement de seuil ne sont connus que dans

des cas particuliers et ils fournissent en général des approximations très médiocres de la vraie

valeur. Les techniques de simulation sont donc très appréciables pour obtenir rapidement des

approximations précises. Nous proposons quatre estimateurs et quatre techniques de simulation
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associées. Nous montrons que les erreurs relatives sont asymptotiquement bornées pour presque

tous les estimateurs. Les simulations montrent que certains estimateurs sont plus précis.



Abstract

Tail distribution of the sums of regularly varying random variables, computations

and simulations

This thesis aims to study computation and simulation methods to approximate tail distribution

of the sums of regularly varying random variables. The paper proceeds as follows:

The first chapter provides the general introduction of the thesis.

The second chapter is essentially constituted by the article ”Series expansions for the sum of the

independent Pareto random variables” which was co-written with Professor Christian ROBERT,

actually submitted for publication. It deals with the problem of estimating tail distribution of

the sum of independent Pareto variables. This problem has been studied for a long time but a

complete solution has not yet been found. In this section, we acquire an exact formula, a series

expansions, for the distribution of the sum of independent Pareto of non-integer tail indices.

Not only is this formula simple and easy to apply but it also gives better numerical results than

most of existing methods.

The third chapter rests on the article ”New efficient estimators in rare event simulation with

heavy tails”, co-written with Professor Christian ROBERT, currently published on ”Journal of

Computational and Applied Mathematics 261, 39-47” in 2013. Practically, efficient estimation

for tail distribution of the sum of i.i.d. regularly varying random variables is one of widely

researched problems in rare event simulation. In this context, Asmussen and Kroese’s estimator

has performed better than other works. This part will introduce a new way to approach the

sum. Our obtained estimator is more efficient than Asmussen and Kroese’s estimator in the

case of regularly varying tail. In other cases, combined with techniques of conditional Monte

Carlo and importance sampling, our estimator is still better.

In the fourth chapter, we continue to study the tail behavior of the sum of regularly varying

variables, with additional assumption that the dependence follows an Archimedean copula or

an Archimedean survival copula. This section hinges on the article ”Efficient simulation of

tail probabilities of sums with heavy tailed random variables and Archimedean copulas” which

is under consideration for being published. Almost all previous studies on this problem used

asymptotic approaches which are hard to control the errors. Therefore, techniques of simulation

to calculate the tail probability of the sum are presented. Though some of our estimators

have bounded relative errors while the others do not, all of them give favorable numerical

performances for such a challenging problem.
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Chapter 1

General introduction

This thesis focuses on calculating the probability that the sum of regularly varying positive

risks exceeds a large threshold. We obtain results from the simple case in which the risks are

independent Pareto random variables to the complex case where the risks are regularly varying

random variables, and the dependence follows an Archimedean model.

1.1 Presentation of the thesis

This dissertation contains four chapters organized as follows:

The first chapter entitled ”General introduction”, gives an overview of the existing works

related to the thesis and briefly presents our results.

The second chapter entitled ”Exact computation for the sums of independent Pareto vari-

ables” is co-authored with Prof Christian ROBERT and is currently being submitted for publi-

cation under the title ”Series expansions for the sums of independent Pareto random variables”.

This section aims to introduce a construction of an exact formula for the distribution of the

sums of independent Pareto random variables. Although Pareto distribution is simple, the dis-

tribution of the sum of two or more independent Pareto random variables is not less simple

than the distribution of the sum of other regularly varying random variables. In particular,

very few explicit analytical expressions of the convolutions are known, for example: Hagstroem

(1960)[28] ; Brennan, Reed and Sollfrey (1968)[20]; Blum (1970)[18]; Ramsay (2006) [45]; and

Ramsay (2008) [46] but all these works are limited due to strong assumptions for the param-

eters of Pareto variables. Some results of the sums of independent regularly varying variables

1



Chapter 1. General introduction 2

are applicable to this part’s problem: Geluk, Peng and De Vries (2000)[25]; Barbe and Mc-

Cormick (2005)[15] and Albrecher, Hipp and Kortschak (2010)[1]. However, these papers study

asymptotic behaviors of the sum rather than exact approaches.

In this chapter, we decide to focus on the sums of independent Pareto random variables. The

major outcome provides an infinite series expansions in the case of Pareto random variables with

non-integer tail indices. The advantage of our finding is that the Pareto variables may have

different tail indices and different scale parameters. This formula is applicable in calculating

risk measures such as VaR, TVaR, ES, etc... for portfolios of independent Pareto risks and

deriving an exact formula for compound sums of Pareto claims.

The third chapter entitled ”The sums of i.i.d. regularly varying random variables and sim-

ulation” is co-written with Prof Christian ROBERT and is recently published under the title

”New efficient estimators in rare event simulation with heavy tails”, on ”Journal of Computa-

tional and Applied Mathematics 261, 39-47”. This section is about the efficient simulation of

probability z(s) = P (Sn > s) where s takes a large value and Sn is the sum of n i.i.d. regularly

varying random variables X1, · · · , Xn.

The classical Monte Carlo simulation method (so-called crude Monte Carlo) is not efficient in

estimating small or very small probabilities because the variance of the estimators is much

larger than the expectation. Methods of variance reduction for estimators of small probabilies

as z(s) have been studied for a long time. For example, Asmussen and Binswanger (1997)[4]

proposed conditional Monte Carlo methods; Asmussen, Binswanger and Hojgaard (2000)[11] and

Juneja and Shahabuddin (2002)[40] used importance sampling techniques; Dupuis, Leder, and

Wang (2007)[23] and Hult and Svensson (2012)[36] provided the dynamic importance sampling

estimators. The best of existing estimators for z(s) was proposed by Asmussen and Kroese

(2006)[9] (called ZAK(s) in this thesis). This estimator is shown in Asmussen and Kroese’s to

have bounded relative error and in Hartinger and Kortschak (2009)[35] to have vanishing relative

error. The exact rate of decay of the relative error of this estimator has been recently given by

Asmussen and Kortschak (2012)[9] under the assumption that probability density functions of

marginal variables exist.

In this chapter, we introduce a new way to construct efficient estimators for z(s). We use a

binomial random variable to control the sums of i.i.d. regularly varying variables. If the tail

index of marginal variables is less than 1, our first estimator performs better than Asmussen and

Kroese’s one without any development. In other cases, combined with techniques of conditional

Monte Carlo (when the tail index is less than 2) or importance sampling (when the tail index

is larger than 2), our estimator still has better results.
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The fourth chapter: ”The sums of dependent regularly varying variables and sim-

ulation” is co-authored with Prof Christian ROBERT and presently under the provision of

being published under the title ”Efficient simulation of tail probabilities of sums with heavy

tailed random variables and Archimedean copulas”. In this part, we calculate tail distribution

of the sums of regularly varying random variables via simulation techniques. The dependence

between the variables is assumed to follow an Archimedean copula or an Archimedean survival

copula.

All past research related to this problem are developed under asymptotic approaches. Albrecher

et al. (2005)[3], Jessen and Mikosch (2006)[37] and Yuen and Yin (2012)[51] studied the relation

between the tail of sums and the tail of marginal variables. Wuthrich (2003)[50] and Sun and

Li (2010)[49] considered Archimedean copulas for the dependence and worked out results in

integral form. Techniques of simulation are used to calculate tail probabilities of dependent

sums in Blanchet et al. (2009)[17], Kortschak and Hashorva (2013)[41], but only for the case

of log-elliptic vectors. There are not many studies relating to the sums of regularly varying

variables under Archimedean copula. In general, the problems of calculating tail distribution of

a dependent sum include:

• How to simulate the risks under dependent assumption: this is a challenging question

since it is hard to calculate the conditional distributions and their inverses using classi-

cal method. Therefore, a dependence structure is often simulated by means of special

stochastic representations, the Gaussian vector is an example of such approach.

• What technique to reduce the variance: even if the dependence structure can be simulated,

the variance of classical Monte Carlo method is too large. To get an efficient estimator, it

requires some variance reduction techniques.

In the fourth chapter, we use the stochastic representation of McNeil (2009)[42] and the simu-

lating procedure of Brechmann (2013)[19] to simulate the dependence structure of Archimedean

copula of generator Φ and focus on the conditional Monte Carlo method to construct some

estimators with efficient relative error for the probability that the sum of regularly varying vari-

ables under Archimedean or Archimedean survival copula is over a large value. Our approach

has the advantage that it does not require the assumption of identically distributed of marginal

variables.

1.2 The main results

In this section, a brief summary of each chapter is presented with the introduction of existing

works followed by our contribution conclusions.
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1.2.1 Exact computation for the sums of independent Pareto variables

Convolution of independent Pareto risks

The Pareto distributions are a primary subclass that is traditionally used by actuaries to model

catastrophic losses in an insurance portfolio, by banks’ risk managers to quantify operational risk

(the risk of losses resulting from inadequate or failed internal processes, people and systems,

or external events) and even by economists to model the income distribution of populations

etc,... These distributions also appear widely in physics, biology, earth and planetary sciences,

computer science, demography and social sciences.

Definition 1.1. If X is a Pareto random variable then the probability that X is greater than

x, i.e the survival distribution function is given, for x ≥ β, by

P(X > x) = I{x≥β}

β
x

α

where α > 0 is called the tail-index and β > 0 is called the scale parameter.

There are different ways of defining Pareto variables. Another way, for example, is given by the

Lomax random variables.

Definition 1.2. If X is a Lomax random variable with scale parameter β and tail-index α then

the probability that X is greater than x, i.e the survival distribution function is given, for x ≥ 0,

by

P(X > x) =

 β

β + x

α

.

Clearly, if X and Y are Pareto random variable and Lomax random variable of the same param-

eters (α, β) respectively, then we have X
d
=Y + β. Suppose that we have n independent risks

in the portfolio denoted by X1, X2, · · · , Xn and all follow a Pareto distribution of parameters

(α1, β1), (α2, β2), · · · , (αn, βn) respectively. We are interested in the problem of calculating the

probability that sum of the variables exceeds a large threshold P(X1 +X2 + · · ·+Xn > s). As

we mentioned in Section 1.1, Pareto distribution has a simple distribution function, however,

the distribution of the sum of n independent variables is difficult to obtain. One of the first

solution for this problem is developed in Hagstroem (1960)[28]. The author derived the exact

results for the case where αi = βi = 1 for i = 1, 2, · · · , n and n ≤ 3.
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Proposition 1.3 (Hagstroem, 1960). If pn(s) = P(
n∑
i=1

Xi > s) with αi = βi = 1 for i =

1, 2, · · · , n and n ≤ 3, then

p1(s) =
1

s
for s ≥ 1,

p2(s) =
2

s
+

log(s− 1)

s2
for s ≥ 2,

and for s > 3,

p3(s) =
3

s
+

6(s− 2) log(s− 2)

s3(s− 1)
+

4

s3
log(s− 1) log(s− 2)

+
2

s3

[(
log(x− 1)

)2 − ( log 2
)2]− 4

s3

L
 1

s− 1
,

1

s− 1

+ L

 1

s− 1
,
1

2

 ,
for 0 < a, b < 1, and a+ b < 1, where

L(a, b) =

1−a∫
b

− log x

1− x
dx.

We can make a remark that even with strong assumptions: αi = βi = 1 and n ≤ 3, the survival

distribution function of the sum of three variables still becomes much more complex. There

is no result for pn(s) when n ≥ 4. In 1970, Blum derived a series expansion for the density

function of Sn for the case βi = 1 and αi = α ∈ (0, 2), α 6= 1 for i = 1, 2, · · · , n.

Proposition 1.4 (Blum, 1970). If fn is the pdf of Sn with βi = 1 and αi = α ∈ (0, 2), α 6= 1

for i = 1, 2, · · · , n then

fn = −
1

π

n∑
i=1

Cin[−Γ(1− α)]i sin(παi)

∞∑
m=0

ξn−i,m
Γ(m+ αi+ 1)

xm+αi+1
,

where ξk,m is the mth coefficient in the series expansion of the kth power of the confluent hyper-

geometric function 1F1(−α, 1− α, t) =
∞∑
j=0

1

j!
tj i.e

∞∑
j=0

ξk,mt
m =

(
1
F1(−α, 1− α, t)

)k
.

The exact expressions for the density of the sum of n independent Pareto random variables by

Hagstroem (1960) and Blum (1970) are only valid for the identical marginal distributions and

a small range of parameters, namely, α = 1 and n ≤ 3 or 0 < α < 2; α 6= 1. Blum cautioned

that it may be difficult to compute with some values of s, of α, and when n is large. Recently,

Ramsay (2006) has developed the exact formula for distribution of the sum of independent

Pareto random variables. His formula is an extension of previous study of Hagstroem (1960)
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and it covers the case where the Pareto random variables are i.i.d. of integer tail-index. His

final result is in an integral form.

Proposition 1.5 (Ramsay, 2006). If Fn and fn are the distribution and density of Sn with

βi = β and αi = m ∈ N then

fn(s) =
1

nβ

∞∫
0

exp

[
−(1 +

s

nβ
)u

]
ϕm,n(u/n) du,

Fn(s) =

∞∫
0

1

u

[
1− exp

(
− su

β

)]
exp(−nu) ϕm,n(u/n) du,

where

ϕm,n(u) = (−1)n+1mn

[(n−1)/2]∑
j=0

(−π2)j C2j+1
n (Eim+1(u))n−2j−1

um
m!

2j+1

,

Eim+1(u) =
um

m!

γ + log u−
m∑
j=1

1

j

+

∞∑
r=0,r 6=m

uj

(j −m)j!
,

and [t] denotes the greatest integer less than or equal to t and γ is the Euler constant.

Ramsay (2008)[46] expanded his work to the case where tail index is not integer and scale

parameters are different. The final result also has an integral form.

Asymptotic approaches for the sums of i.i.d. regularly varying random variable

Pareto random variable is a special case of regularly varying random variables then all results

on regularly varying variables can be applied to a Pareto random variable.

Definition 1.6. A measurable function f, f : [0,∞)→ [0,∞) is said to be regularly varying at

∞ of index ϑ, ϑ ∈ R, if it satisfies

lim
x→∞

f(tx)

f(x)
= tϑ for all t ∈ R+.

We write f ∈ RV∞(ϑ). If ϑ = 0 then f is said to be slowly varying.

Definition 1.7. A random variable X is said regularly varying if there exists an index α > 0

such that its survival distribution is a regularly varying function at ∞ with index −α, i.e P(X >

x) = F̄X(x) ∈ RV∞(−α).

According to the Karamata’s representation (see A.1), all regularly varying function F̄ ∈
RV∞(−α) can be written as F̄ (x) = x−αL(x) where L(x) is a slowly varying function. If
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the slowly varying function equals to a constant, we have the Pareto variable whose scale pa-

rameter equals to that constant. Albrecher, Hipp and Kortschak (2010)[1] derived a series

expansion for distribution of the sum of n i.i.d. regularly varying variables of common survival

function F̄ (x), the error of the result is asymptotically bounded by [F̄ (s)]2.

Theorem 1.8 (Albrecher, Hipp and Kortschak, 2010). Let X1, X2, · · · , Xn be i.i.d. random

variables of common survival distribution function F̄ ∈ RV−α. If the function F̄ is [α]-times

continuously differentiable

If k < α < k + 1 then

P(Sn > s) = ak+1(s)− C2
nF̄ (s)2 (1− 2α) Beta(1− α, 1− α) +O(F̄ (s)2).

If α = k + 1 then

P(Sn > s) = ak+1(s)+
n(−1)k+1F̄ (k+1)(s)

(k + 1)!

s/2∫
0

xk+1dF ∗(n−1)(x)+O

F̄ (k+1)(s)

s/2∫
0

xk+1dF ∗(n−1)(x)



where a1(s) = nF̄ (s) and ah(s) = a1(s)+
h−1∑
j=1

nE
[
(X1 + · · ·+Xn−1)j

]
j!

F̄ (j)(s); h = 2, · · · , k+1.

Apply this formula to the sum of n i.i.d. Pareto random variables of parameters (α, β), we have

P(Sn > s) = nβα
(
s−α +

k−1∑
j=1

α · · · (α+ j − 1)

j!

1≤r≤j∑
∑
jr=j

j!

j1! · · · jh!

h∏
l=1

αβjl

α− jl
s−α−j

)
+O

(
s−α−k+1

)
where k = [α+ 1]. (see the Proof 1.3)

Inverse Laplace transform to approximate the sum of independent Paretos

Inverse Laplace transform is a numerical approach to approximate the distribution of the sum

of independent Pareto random variables. This method is widely used in sciences with many

applications of physics and engineering. If the Laplace transform of a function exists and is

calculable, we can approximate that function via inverse techniques.

Definition 1.9. The Laplace transform of a function f(t), defined for all real numbers t ≥ 0,

written by L(f(t)), defined by

L(f(t)) =

∞∫
0

e−txf(x)dx.

Generally, inverse Laplace transform is applicable to calculate the distribution of sum of random

variables when the random variables are independent because the Laplace transform of the sum
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is calculated by the product of the Laplace transforms of these marginal variables. The Laplace

transform of a Pareto with parameters (αi, βi) is determined by

L(fi(t)) = E(e−tXi) = αiβ
α
i

∞∫
βi

x−αi−1 e−txdx = αiβ
αi
i Γ(−αi, βit),

where Γ(a, b) is upper incomplete gamma function. The Laplace transform of the sum is then

L(fSn(t)) = E(e−tSn) =
n∏
i=1

E(e−tXi) = t

n∑
i=1

αi
n∏
i=1

αiβ
αi
i Γ(−αi, βit).

There are several methods proposed to calculate inverses Laplace transform. One of the most

well-known is the Gaver-Wynn-Rho’s (GWR) algorithm. If f(t,M) is numerical result cal-

culated by inverse Laplace transform and f(t) is the true value, the error of GWR method

satisfies
|f(t)− f(t,M)|

|f(t)|
≤ 10−0.8M

where parameter M of the algorithm is an even integer. For more details about inverse Laplace

transform and GWR algorithm, see Appendix A.3.

Our result

In the second chapter, we present an analytic approach to calculate the distribution of the sum

of independent Pareto variables. The Pareto variables can have different tail indices and scale

parameters. The calculation technique used in this section is very simple. The result has a

familiar form as a series expansion and it can be calculated directly if no tail indices are integer.

In the case that there are some integer tail indices, with the high precision calculation, we can

get approximate results. We try to develop an exact formula for the probability P(Sn > s) where

the marginal variables are n Paretos: X1(α1, β1), · · · , Xn(αn, βn). Our key result is organized

as follow:

• If no tail indices α1, · · · , αn are integer, the probability P(Sn > s) is written in a series

expansion form:

P(Sn > s) =
θ∈Θ∑

cθ s
−αθ

where αθ ∈ {αi1 + · · ·+ αij + k : {i1, · · · , ij} ∈ {1, · · · , n}; k ∈ N}.

• Corresponding coefficient of s−αθ is calculated by the functions c, w and h, which will be

determined easily. If there is a subset {i1, · · · , ij} of {1, · · · , n} such that αi1 +· · ·+αij ∈ N
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then all coefficients correspond to s
−

j∑
l=1

αil+k
are vanishing. That means there is no integer

power in the series expansion.

• There is an exact formula for distribution of the sum of two Paretos of integer tail indices.

If there are more than three integer indices, supposed to be αi1 , · · · , αil , the calculation

is done with the tail indices αi1 + ε, · · · , αil + ε. The obtained result is a lower bound for

P (Sn > s). Similarly, the calculation with αi1 − ε, · · · , αil − ε gives us an upper bound for

P (Sn > s). When ε is close to 0, the upper bound and the lower bound converge to the

true value (see Section 2.5).

Our formula in form of series expansion is the complete expression for distribution of the sum

of independent Pareto variables of non-integer tail indices and different scale parameters. The

limitation is obvious since if there is no exact formula in the case that there are three or more

integer tail indices, the result is obtained numerically and the calculation requires high precision.

In contrast, it has certain advantages over existing works: tail indices and scales parameters

can be different, final formula is in familiar form, and distribution function can be calculated

for any range of s and very quickly when s is large. Moreover, the exact formula allows us to

have some interesting extensions. For example, we can derive a simple formula for the sum of

N i.i.d. Pareto variables where N is a random variable. We can also calculate distribution of

the sum of Pareto variables where the scale parameters are dependent random variables with

finite expectations.

1.2.2 The sums of i.i.d. regularly varying random variables and simulation

This chapter targets on tail behavior of distribution of the sums of independent regularly varying

random variables. The variables are assumed to be identically distributed with same survival

distribution function F̄ ∈ RV∞(−α). As mentioned above, regularly varying variable is a

general case of Pareto where the scale parameter is replaced by a slowly varying function (see

1.6). Several techniques of Monte Calrlo simulation are applied to approach the sums. Indeed,

the idea of these techniques comes from the weak law of large number: If Y1, Y2, · · · is an infinite

sequence of i.i.d. random variables with expected value E(Y1) = E(Y2) = · · · = µ then

lim
N→∞

Y1 + Y2 + · · ·+ YN

N

d
= µ.

To calculate z(s) = P(Sn > s) via Monte Carlo simulation, we first create a random variable

Y (s) such that E(Y (s)) = z(s), then using a sample (Y1(s), Y2(s), · · · , YN (s)) of N i.i.d. ran-

dom variables of the same distribution function of Y (s). Finally, Ȳ =
Y1 + · · ·+ YN

N
is an

approximate value of z(s). In this case, variable Y (s) is called an estimator for z(s).
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Crude Monte Carlo and infinite relative error

Crude Monte Carlo is the simplest way to construct an estimator for P(Sn > s). We denote

this estimator as Z1(s). It is defined by

Z1(s) = I{X1+···+Xn>s}.

By this definition, Z1(s) is a Bernoulli random variable of parameter z(s). The expectation

and variance of Z1(s) are: E(Z1(s)) = z(s) and Var(Z1(s)) = z(s)(1− z(s)). In the context of

rare event simulation, the important criteria to evaluate quality of an estimator is relative error

(so-called variation coefficient). It is defined by

Definition 1.10. The relative error of an unbiased estimator Z(s) of z(s), denoted e(Z(s)), is

the ratio of the standard deviation on the expected value

e(Z(s)) =
Sd(Z(s))

E(Z(s))
=

Sd(Z(s))

z(s)
.

We can verify the relative error of crude Monte Carlo estimator of P(Sn > s)

e(Z1(s)) =

√
z(s)(1− z(s))

z(s)
=
√

(1− z(s))/z(s) ∼
√

1/z(s)→∞ when s→∞.

Using crude Monte Carlo method, the ratio of standard deviation of Ȳ on its expected value

is asymptotically equivalent to
√
N/z(s). The number of replications must be large enough

compared to [z(s)]−1 to have an efficient approximation. Practically, this method is ineffective

when z(s) is less than 10−4. For probabilities smaller than 10−9, it is impossible because of the

problem of random number generator.

Conditional Monte Carlo and Asmussen and Kroese’s estimator

In the following sections we will review variance reduction techniques for estimators. As for the

effeciency of an estimator in rare event simulation, Asmussen and Glynn (2006) defined it in

three levels of relative error.

Definition 1.11. An unbiased estimator Z(s) of the probability z(s) = P (Sn > s) is called

• (1) Logarithmically efficient estimator if lim sups→∞ e(Z(s)) [z(s)]ε = 0 for all ε > 0.

• (2) Estimator with bounded relative error if lim sups→∞ e(Z(s)) <∞.
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• (3) Estimator with vanishing relative error lim sups→∞ e(Z(s)) = 0.

It is obvious that (3) is better than (2) and (1) is the lowest level of efficiency. Moreover,

estimators with vanishing relative error can be evaluated from their rates of decay. For example,

if Za(s) and Zb(s) have vanishing relative errors satisfying e(Za(s)) ∼ [z(s)]a and e(Zb(s)) ∼
[z(s)]b with 0 < a < b, respectively, we say that Zb(s) is better than Za(s).

A well-known variance reduction method in rare event simulation is conditional Monte Carlo.

Asmussen and Glynn (2006)[7] defined a conditional Monte Carlo estimator for P(Sn > s) by:

P(Sn > s|F) where F is a subset of the σ − field σ(X1, · · · , Xn). The challenge, however, is

how to find the condition F to minimize the variance (or relative error) of P(Sn > s|F). A very

simple idea for F is F = {X1, · · · , Xn−1}, which results in estimator called Z2(s):

Z2(s) = P(Sn > s|X1, · · · , Xn−1) = F̄ (s− Sn−1)

where Sn−1 = X1 + · · · + Xn−1. To obtain Z2(s), we simulate (n − 1) variables X1, · · · , Xn−1

instead of simulating all the variables. Variance of Z2(s) is smaller than that of crude Monte

Carlo estimator Z1(s), but they are asymptotically equivalent. Indeed

E
(
[Z2(s)]2

)
= E

(
[F̄ (s− Sn−1)]2

)
≥ E

(
[F̄ (s− Sn−1)]2, X1 > s

)
= F̄ (s) ∼

z(s)

n
.

Obviously, relative error of Z2(s) has no improvement compared to Z1(s)

e(Z2(s)) =
Sd(Z2(s))

z(s)
≥

√
z(s)/n− [z(s)]2

z(s)
=
√

(1/n− z(s))/z(s) ∼ e(Z1(s))/
√
n.

The relative error of Z2(s) is large because in the condition F = {X1, · · · , Xn−1}, the probability

that a single Xi takes a large value is too high. To get better performances, Asmussen and Glynn

introduced the second conditional Monte Carlo estimator for the sums of i.i.d. regularly varying

random variables. The condition F is developed from the order statistics of X: suppose that

vector (X1, X2, · · · , Xn) can be arranged in non-decreasing order: X(1) ≤ X(2) ≤ · · · ≤ X(n), if

F = {X(1), X(2), · · · , X(n−1)} we have the second conditional Monte Carlo estimator Z3(s):

Z3(s) = P(Sn > s|X(1), X(2), · · · , X(n−1)).

Note that if X(1), X(2), · · · , X(n) is the order statistic of (X1, X2, · · · , Xn) then the survival

distribution of X(n) conditioned on X(1), · · · , X(n−1) is

P(X(n) > s|X(1), X(2), · · · , X(n−1)) =
F̄
(
s ∨X(n−1)

)
F̄ (X(n−1))

.
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Therefore, we can write the estimator Z3(s) as follows

Z3(s) = P(X(n) > s− S(n−1)|X(1), X(2), · · · , X(n−1)) =
F̄
(
s− S(n−1) ∨X(n−1)

)
F̄ (X(n−1))

.

Proposition 1.12 (Asmussen and Glynn, 2006). Conditional Monte Carlo estimator Z3(s) is

logarithmically efficient i.e e(Z3(s))[z(s)]ε < 0 for all ε > 0.

The relative error of Z3(s) meets the first requirement of efficiency. Asmussen and Kroese

(2006)[10] used the property that variables are exchangeable and symmetry in a sum to introduce

another conditional Monte Carlo estimator for z(s). The idea here is partitioning according to

which Xi is the largest i.e for which i one has Mn = X(n) = Xi, and conditioning on the Xj

with j 6= i. The estimator of Asmussen and Kroese, called Z4(s) in the book of Asmussen and

Glynn[7], and ZAK(s) in this thesis, is defined by

ZAK(s) = n P (Sn > s,Xn = Mn|X1, · · · , Xn−1) = nF̄ (Mn−1 ∨ (s− Sn−1)) .

It can be seen that ZAK(s) has bounded relative error. Indeed, if Mn−1 ≤ s/n then Sn−1 ≤
(n− 1)s/n. Therefore we have Mn−1 ∨ (s− Sn−1) ≥ s/n. Thus, it follows that

E
(
[ZAK(s)]2

)
≤ n2

(
[F̄ (s/n)]2

)
∼ n2+2α[F̄ (s)]2 ∼ n2α[z(s)]2.

Hartinger and Kortschak (2009)[35] proved that the performance of this estimator is better than

the bounded relative error i.e it has vanishing relative error. Recently, the exact rates of decay

of e(ZAK(s)) have been given by Asmussen and Kortschak (2012)[9] with the assumption that

the probability density function f of X1 exists.

Theorem 1.13 (Assmusen and Kortschak, 2012). With assumption that the density of the

marginal variables exists and are regularly varying: f(x) = αx−(α+1)l(x);

• If α > 2 or E(X2
1 ) <∞, then Var(ZAK(s)) ∼ n2(n− 1)Var(X1)[f(s)]2.

• If α = 2 and E([X1]2) =∞, then Var(ZAK(s)) ∼ 2n2(n− 1)[f(s)]2
s∫
0

uF̄ (u)du.

• If α < 2, then Var(ZAK(s)) ∼ n2(n− 1) kα [F̄ (s)]3 where

kα = 2α +
23α

3
− 22α + α

1/2∫
0

((1− u)−α − 1)2u−α−1du = α
∫∞

0

[
((1− u) ∨ u)−α − 1

]2
u−α−1du.

The exact rate of decay for e(ZAK(s)) depends from α:
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• For α > 2 or more general, E(X1) <∞

e(ZAK(s)) =
Sd(ZAK(s))

z(s)
∼
√
n− 1 Sd(X1) f(s)

F̄ (s)
= (1 + o(1)) α

√
n− 1 Sd(X1) s−1.

• For α = 2 and E([X1]2) =∞

e(ZAK(s)) ∼
f(s)

[
2(n− 1)

s∫
0

uF̄ (u)du

]1/2

F̄ (s)
= (1 + o(1))

√
2(n− 1)

 s∫
0

uF̄ (u)du

1/2

s−1.

• For α < 2

e(ZAK(s)) ∼

√
n2(n− 1) kα [F̄ (s)]3

nF̄ (s)
= (1 + o(1))

√
(n− 1)kα [F̄ (s)]1/2.

Note that in the case of α = 2 and E([X1]2) = ∞, the term
s∫
0

uF̄ (u)du is a slowly varying

function which is upper bounded by sε for all ε > 0.

Improved Asmussen and Kroese’s estimator

Asmussen and Kortschak (2012)[9] introduced a related estimators for ZAK(s) with faster rates

of decay for the two cases: α > 2 and 1 < α < 2. If α > 2, by applying the Taylor expansion,

the probability z(s) = P(Sn > s) can be written in term of F̄ (s) and its derivatives:

P(Sn > s) = nF̄ (s) + nf(s)E(Sn−1) + nf ′(s)
E([Sn−1]2)

2!
+ · · ·

They suggested to use Sn−1 as control variable and then resulting is the estimator

ZAKo(1)(s) = ZAK(s) + n(E(Sn−1)− Sn−1)f(s).

The exact rates of decay of this estimator are given when the first derivative of f exists.

Theorem 1.14 (Asmussen and Kortschak, 2012). Assume the first derivative of f exists and

is regularly varying at infinite: f ′(s) = −α(α− 1)s−α−2l1(s).

• If α > 4 or more general E(X4
1 ) <∞, then

Var(ZAKo(1)(s)) ∼
n2

4
Var([Sn−1]2)[f ′(s)]2.
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• If α = 4 and E(X4
1 ) =∞, then

Var(ZAKo(1)(s)) ∼ n2(n− 1)[f ′(s)]2
s∫

0

u3F̄ (u)du.

• If 2 < α < 4, then Var(ZAKo(1)(s)) ∼ n2(n− 1) k′α [F̄ (s)]3 where

k′α = α

∫ ∞
0

[
((1− u) ∨ u)−α − 1− αu

]2
u−α−1du.

In the case of 1 < α < 2, Asmussen and Kortschak suggested the use of an importance sampling

method to improve ZAK(s) and proposed to consider the estimator ZAKo(2)(s) = Z(b)(s) +

nZ(c)(s) where

Z(b)(s) = n(n− 1)[F̄ (s/(2(n− 1)))]2I{Sn>s,Xn−1∧Xn≥Mn−2}

Z(c)(s) = (F̄ (s− Sn−1)− F̄ (s))I{Mn−1≤s/(2(n−1))}R+ F̄ (s)P

Mn−1 ≤
s

2(n− 1)



with R =
n−1∏
i=1

f(Xi)/f̃(Xi) and f̃ is an importance sampling density of the form L̃(s)/sα̃ such

that α̃ < 2α− 2. The variance of ZAKo(2)(s) is equivalent to O([f(s)]2) when s→∞.

Thus, the study of Asmussen and Kortschak has improved the estimator ZAK(s) for all the case

where the tail index α > 1. The relative error is calculated as follows:

• For 1 < α < 2, then

e(ZAKo(2)(s)) ∼ O(f(s))/(nF̄ (s)) = O(s−1).

• For 2 < α < 4, then

e(ZAKo(1)(s)) ∼
[
n2(n− 1) kα [F̄ (s)]3

]1/2
nF̄ (s)

= (1 + o(1))
√

(n− 1) kα [F̄ (s)]1/2.

• For α > 4, then

e(ZAKo(1)(s)) ∼

[
n2

4 Var([Sn−1]2) [f ′(s)]2
]1/2

nF̄ (s)
= (1 + o(1))

α(α− 1)

2
Sd([Sn−1]2) s−2.
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Some importance sampling estimators for the sums of i.i.d. regularly varying ran-

dom variables

Importance sampling is a variance reduction technique that can be used in the Monte Carlo

simulation. The idea behind importance sampling is that certain values of the random variables

in a simulation have more impact on the parameter being estimated than others. If these

values are emphasized by sampling more frequently, then the estimator variance can be reduced.

Mathematically, the importance sampling is based on the Radon-Nikodym derivative. If f(x) =

f(x1, x2, · · · , xn) is the density of vector X = (X1, X2, · · · , Xn), the probability z(s) = P (Sn >

s) will be simulated by a sample X∗ = (X∗1 , X
∗
2 , · · · , X∗n) where

P (Sn > s) = E
[
I{X1+X2+···+Xn>s}

]
=

Rn∫
I{x1+x2+···+xn>s}f(x)dx

=

Rn∫
I{x1+x2+···+xn>s}

f(x)

f∗(x)
f∗(x)dx = E

I{X∗1 +X∗2 +···+X∗n>s}
f(X∗)

f∗(X∗)

 ,

where f∗(x∗) is the density function of X∗. To construct an importance sampling estimator,

we pay attention to find a biased density f∗ such that the variance under the importance

sampling estimator is less than the variance of crude Monte Carlo method. Asmussen and Kroese

(2006)[10] introduced the first importance sampling estimator for z(s) where the importance

sample was chosen as: X1, · · · , Xn−1 which their densities remain the same while X∗n is a Lomax

random variable of parameter (α, 1) with density f∗n i.e. f∗n(x) = α/(1 + x)1+α.

P(Sn > s) = nP(Sn > s,Xn = Mn) = n E
(
I{Sn>s,Xn=Mn}

)
= n E

f∗n(X∗n)

fn(X∗n)
I{X1+···+Xn−1+X∗n>s,X

∗
n=Mn}

 .

This formula results in an importance sampling estimator for z(s), called ZIS1 (s):

ZIS1 (s) =
f∗(X∗n)

f(X∗n)
I{X1+···+Xn−1+X∗n>s,X

∗
n=Mn}.

Asmussen and Kroese proved that this estimator is logarithmically efficient. Another impor-

tance sampling estimator for z(s) is introduced by Dupuis et al. (2007)[23]. The sample was

constructed in such a way that the estimator has a bounded relative error. Before going into

details of this importance sampling method, we define the notation X [a,b] for the conditional

random variable X|X ∈ (a, b]. If the density of X is fX(x) then the density of X [a,b] is

fX[a,b](x) = fX(x)/P(X ∈ (a, b])I{a<x≤b}.
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The ith variable of the importance sample X∗i is created by mixing the original density fi = f

with the density of conditional random variable X
[c(s−S∗i−1),∞]

i where c is a constant in (0, 1)

and S∗i−1 = X∗1 + · · ·+X∗i−1

• For i = 1, X∗1 has the density

fX∗1 (x) = p1f(x) + q1fX[cs,∞]
1

(x).

• For 1 < i < n, if S∗i−1 > s then X∗i has the density f(x), otherwise

fX∗i (x) = pif(x) + qif
X

[c(s−S∗
i−1

),∞]

i

(x).

• X∗n has the density f(x) if S∗n−1 > s, otherwise

fX∗n(x) = f
X

[c(s−S∗n−1),∞]

n

(x)

where p1, p2, · · · , pn−1 are real numbers in (0, 1) and qi = 1 − pi for i = 1, 2, · · · , n − 1. This

estimator, called ZIS2 (s), has a bounded relative error (see Dupuis et al. (2007)[23]). Hult and

Svensson (2012)[36] developed Dupuis et al. (2007) method and found the upper bound for its

relative error as a function of c and pi, qi; i = 1, 2, · · · , n.

e(ZIS2 (s)) ≤

√
E([ZIS2 (s)]2)

z(s)
≤

1

n

n−1∑
i=1

c−α

qi

i−1∏
j=1

1

pj
+
n−1∑
i=1

1

pi

1/2

and the parameters pi, qi; i = 1, 2, · · · , n which minimize the upper bound are

pi =
(n− i− 1)c−α/2 + 1

(n− i)c−α/2 + 1
; qi = 1− pi.

At these points, the minimum value for the upper bound is ((n− 1)c−α/2 + 1)/n.

Our results

In the third chapter, we propose some estimators with vanishing relative error for z(s) = P (Sn >

s) where Sn is the sum of n i.i.d. regularly random variables of tail index α. Our estimators

are constructed by mixing the conditional Monte Carlo with importance sampling method and
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achieve better performance compared to the existing estimators. First, z(s) is decomposed into

P(Sn > s) = P(Sn > s,Mn > s) + P(Sn > s,Mn ≤ s)

= P(Mn > s) + P(Sn > s,Mn ≤ s)

= P(Mn > s) + P(Mn ≤ s)× P(Sn > s|Mn ≤ s).

Note that P(Mn > s) and P(Mn < s) are determined, we focus on the probability P(Sn >

s|Mn < s). With the notation X [a,b] = X|X ∈ (a, b], we have

P(Sn > s|Mn < s) = P(X
[0,s]
1 + · · ·+X [0,s]

n > s).

Instead of using the max Mn as the control variable as Asmussen and Kroese, we define a

discrete random variable Ns which is equal to the number of X
[0,s]
i such that X

[0,s]
i > s/n. By

this definition, Ns is a binomial variable of parameter pNs which is calculated as follows:

pNs = (F (s)− F (s/n))/F (s) ∼ (1 + o(1))(nα−1 − 1)z(s).

Applying the law of total probability and notice that P(X
[0,s]
1 + · · · + X

[0,s]
n > s,Ns = 0) = 0,

we have

P(X
[0,s]
1 + · · ·+X [0,s]

n > s) = P(Ns = 1)× P(X
[0,s]
1 + · · ·+X [0,s]

n > s|Ns = 1)

+ P(Ns ≥ 2)× P(X
[0,s]
1 + · · ·+X [0,s]

n > s|Ns ≥ 2).

The probability Ns ≥ 2 is determined by

P(Ns ≥ 2) = 1− (1− pNs)n − npNs(1− pNs)n−1 ∼
n(n− 1)

2
[pNs ]

2 +O([pNs ]
2)

∼ (1 + o(1))
n(n− 1)

2
(nα−1 − 1/n)2[z(s)]2 +O([z(s)]2).

The rate of convergence of P(Ns ≥ 2) is equivalent to [z(s)]2 which implies that we must focus

on P(X
[0,s]
1 + · · ·+X

[0,s]
n > s|Ns = 1). Our estimators, denoted by ZNR(1)(s) and ZNR(2)(s), are

presented in the third chapter as follows:

• Estimator ZNR(1)(s) is developed under the assumption that the density of Xi is I(α)

times differentiable where I(α) is the integer part of α. The relative error of ZNR(1)(s)

satisfies

– If α− I(α) < 1/2, then e(ZNR(1)(s)) ∼ O(z(s)).

– If α− I(α) > 1/2, then e(ZNR(1)(s)) ∼ O(s−I(α)−1/2).
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• Estimator ZNR(2)(s) is constructed with the relative error which satisfies e(ZNR(2)(s)) ∼
O(s−α/(1+α)) for all α > 0 derived without any assumption of the density. This rate of

decay is better than ZAK(s) in the case of α < 1.

1.2.3 The sum of dependent regularly varying variables and simulation

In the second and the third chapter, we focused on the sums of regularly varying variables

without any dependent assumption. However, in fact, dependences exist frequently between

variables. In some cases, the results with dependent assumption completely differ from the

results without dependent assumption. For example, the probability that the sum of n co-

monotone Lomax variables with the same tail index α exceeds s will asymptotically decrease

nα times compared to that under the independent assumption. In this thesis, we are interested

in the asymptotic behaviors of dependence which is so-called tail dependence.

Definition 1.15. The tail dependent coefficient of the positive random variables X1, X2 with

distribution functions F1 and F2 is defined by

λ1,2 = lim
u→1

P(F1(X1) > u|F2(X2) > u).

If λ1,2 > 0, we say X1 and X2 are tail dependent and if λ1,2 = 0, we say X1 and X2 are tail

independent. Note that X1 and X2 may be strongly dependent but they can be tail independent,

Gaussian vector is an example.

Asymptotic results for the sums of dependent regularly varying variables

Albrecher and Asmussen (2005) studied tail distribution of the sum of two dependent heavy tail

random variables. They considered the positive exchangeable random variables X1, X2 of the

same continuous marginal distribution function F and obtained results for asymptotic behavior

of P(X1 +X2 > s).

Proposition 1.16 (Albrecher and Asmussen, 2005). If X1 and X2 are regularly varying ran-

dom variables of the same distribution function F ∈ RV∞(−α), with S2 = X1 + X2, then the

ratio P(S2 > s)/F̄ (s) has the lower bound satisfying

lim inf
s→∞

P(S2 > s)

F̄ (s)
≥ 2− λ1,2
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and the upper bound satisfying

lim sup
s→∞

P(S2 > s)

F̄ (s)
≤


(
λ

1/(α+1)
1,2 + (2− λ1,2)1/(α+1)

)α+1
,0 ≤ λ1,2 ≤ 2

3

2α(2− λ1,2) ,23 < λ1,2 ≤ 1.

These results were developed by Albrecher et al. (2006)[2] in the case of the non-identical

marginal distribution functions. If the survival distribution functions of X1 and X2 are regularly

varying and satisfy lim
s→∞

F̄2(s)
F̄1(s)

= c and the coefficient λ̂1,2 is defined by

λ̂1,2 = lim
s→∞

P(X2 > s|X1 > s)

then we have the lower bound and the upper bound for the ratio P(S2>s)
F̄1(s)

:

• the lower bound

lim inf
s→∞

P(S2 > s)

F̄1(s)
≥ 1 + c− λ̂1,2

• the upper bound

lim sup
s→∞

P(S2 > s)

F̄1(s)
≤


(
λ̂

1/(α+1)
1,2 + (1 + c− 2λ̂1,2)1/(α+1)

)α+1
,0 ≤ λ̂1,2 ≤ 1+c

3

2α(1 + c− λ̂1,2) ,1+c
3 < λ̂1,2 ≤ 1

The result of Proposition 1.16 is a special case when marginal distributions are identical: c = 1

and λ̂1,2 = λ1,2. An important result for the sums of dependent regularly varying variables is

the sums of asymptotically independent variables. Jensen and Mikosch (2006)[37] provided the

tail behavior of the sum of n dependent random variables X1, X2, · · · , Xn where X1 is regularly

varying while the other may be regularly varying or may be not.

Theorem 1.17 (Jessen and Mikosch, 2006). Assume X1 is regularly varying with index α1 ≥ 0

and survival distribution function F̄1. Assume X2, · · · , Xn are random variables which satisfy

lim
s→∞

P(Xi > s)

F̄1(s)
= c+

i for all i = 2, · · · , n

for some non-negative numbers c+
i and

lim
s→∞

P(Xi > s,Xj > s)

F̄1(s)
= 0 for i 6= j
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then

lim
s→∞

P(Sn > s)

F̄1(s)
= 1 + c+

2 + · · · c+
n .

In particular, if marginal variables Xi are non-negative independent regularly varying random

variables, then

P(Sn > s) ∼ P(X1 > s) + P(X2 > s) + · · ·+ P(Xn > s).

The assumptions in Theorem 1.17 are strong. If there exist indices i such that c+
i are not

vanishing, the condition lim
s→∞

P(Xi > s,Xj > s)

F̄1(s)
= 0 for all i 6= j makes sure that Xi are

asymptotically independent of the others. If both c+
i and c+

j are vanishing i.e. both tails of Xi

and Xj are dominated by the tail of X1. Even if Xi and Xj are tail dependent, the dependence

has no impact on the tail of Sn. Yuen and Yin (2012)[51] expanded Geluk and Tang (2009)[34]

and proposed some asymptotic results for the sum of long tail random variables. These results

can be applied for the sum of regularly varying marginal variables. Yuen and Yin suggested

three assumptions for dependence structure:

• Assumption 1: Assume that λ̂i,j = lim
xi∧xj→∞

P(Xi > xi|Xj > xj) = 0 for all i 6= j. This is

so-called asymptotic independent.

• Assumption 2: Assume that there exist positive constants x0 and c0 such that the inequal-

ity

P(Xi > xi|Xj = xj) ≤ c0F̄i(xi)

holds for all i 6= j and xi ∧ xj > x0.

• Assumption 3: Assume that the dependence between the variables can be presented by

an absolutely continuous copula C(u1, · · · , un) and there exist positive numbers m and

M such that the copula density satisfies

m ≤ c(u1, · · · , un) ≤M

for all (u1, · · · , un) ∈ (0, 1)n.

It can be shown that assumption 3 is a special case of assumption 2 while assumption 2 is a

special case of assumption 1. Some related interesting discussions can be found in Geluk and

Tang (2009). The main result of Yuen and Yi’s paper is in the following theorem.
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Theorem 1.18 (Yuen and Yi, 2012). If X1, · · · , Xn are regularly varying random variables with

distributions F1, · · · , Fn respectively and (X∗1 , · · · , X∗n) is an independent copy of (X1, · · · , Xn)

and has independent components then

• Under the assumption (i), we have

lim inf
s→∞

P(Sn > s)
n∑
i=1

F̄i(s)

≥ 1.

• Under the assumption (ii) and if additionally P(X∗1 + · · ·+X∗n > s) ∼
n∑
i=1

F̄i(s), then

P(Sn > s) ∼
n∑
i=1

F̄i(s).

We can see that if X1, X2, · · · , Xn are dependent regularly varying variables, X∗1 , X
∗
2 , · · · , X∗n

are also regularly varying. According to Theorem 1.17, since X∗1 , X
∗
2 , · · · , X∗n are independent,

we have: P(X∗1 + · · ·+X∗n) ∼
n∑
i=1

F̄i(s) i.e. the additional assumption of Theorem 1.18 is verified.

We can conclude that under (ii): P(Sn > s) ∼
n∑
i=1

F̄i(s).

The asymptotic results in Jessen and Mikosch (2006) or Yuen and Yi (2012) do not require any

specific dependent model but it is hard to expand these works further. In the next section, we

will introduce some studies where the dependence follows some parametric models.

Asymptotic results for the sums of regularly varying variables and Archimedean

copulas

The notion of copula was introduced in Sklar (1959)[48] to decompose an n-dimensional distribu-

tion function F into two parts, the marginal distribution functions Fi and copula C, describing

the dependence part of the distribution. See A.2 for more details about copulas.

Copulas have an important property that they do not change after strictly increasing transfor-

mations of marginal variables, i.e copula of (X1, · · · , Xn) and copula of (g1(X1), · · · , gn(Xn))

are the same if all gi are strictly increasing functions. This property allows us to study marginal

distributions and dependence structure of multivariate distribution functions separately. This is

why copulas are useful in defining new measures of dependence as concordance, tail dependence

coefficient, etc...(see Appendix A.2)

Archimedean copula is a family of copulas indexed by a class of univariate functions, which

was first introduced by Nelsen (1999)[44]. Construction of an Archimedean copula is based on
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a decreasing function Φ, called Archimedean generator. For bivariate case, Nelsen found the

condition for Φ to be an Archimedean generator.

Theorem 1.19 (Nelsen, 1999). Let Φ be a continuous, strictly decreasing function from [0,∞)

to [0, 1] such that Φ(0) = 1, and let Φ← be the inverse of Φ. Let C be the function from [0, 1]2

to [0, 1] given by

C(u, v) = Φ (Φ←(u) + Φ←(v))

then C is a copula if and only if Φ is convex.

An n-dimensional Archimedean copula is defined by

C(u1, u2, · · · , un) = Φ (Φ←(u1) + Φ←(u2) + · · ·+ Φ←(un)) .

McNeil (2009)[42] studied the conditions for Φ to be Archimedean generator of an n-dimensional

Archimedean copula. The details of generator of n dimensional Archimedean will be discussed

in Section 4.2.

In the fourth chapter, we are interested in simulation method to calculate the probability

P(Sn > s), where Xi are regularly varying and the dependence is an Archimedean copula

or the Archimedean survival copula. Mario V.Wuthrich (2003)[50] suggested that the limit

qn(α, β) = P(Sn>s)
P(X1>s)

exists under the conditions that the marginal survival distribution func-

tions F̄1, F̄2, · · · , F̄n are identical and satisfy F̄i ∈ RV∞(−α); moreover, the dependence is an

Archimedean survival copula of generator Φ where Φ ∈ RV∞(−β). Wuthrich also provided a

numerical algorithm to calculate qn(α, β). (see Section 4.1 ). Likewise, Sun and Li (2010)[49]

studied the relation between dependence structure of Archimedean copulas and dependence

structure of multivariate regularly varying vectors to achieve integral form for the limit P(Sn>s)
F̄1(s)

in the cases of Archimedean copulas and Archimedean survival copulas.

Definition 1.20. A random vector X = (X1, X2, · · · , Xn) of multivariate distribution function

F (x1, x2, · · · , xn) is said to be multivariate regularly varying if there exists a Radon measure µ

(i.e. the measure is finite on compact sets), on Rn/{0} such that

lim
s→∞

P(X ∈ sA)

P (||X|| > s)
= µ(A)

for any compact set A ∈ Rn/{0}.

Note that if vector X is regularly varying then all the marginal distribution functions are

regularly varying with the same tail index. The Radon measure µ depends on the choice of

norm ||.||. Under the assumption of multivariate regularly varying, Sun and Li introduced the
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upper tail dependent function and the upper exponent function, denoted by b∗(x) and a∗(x),

defined as follows

b∗n(x) = lim
ε→0+

C̄(1− εx1, · · · , 1− εxn)

ε
∀x = (x1, · · · , xn) ∈ Rn+.

a∗n(x) =
∑

1≤i1,··· ,ij≤n
(−1)j−1b∗j (xi1 , · · · , xij ).

The authors realized the relation between the Radon measure µ and the tail dependent functions.

Theorem 1.21 (Sun and Li, 2010). Let X = (X1, · · · , Xn) be a non-negative regularly vary-

ing random vector with Radon measure µ, copula C and continuous marginal distributions

F1, · · · , Fn. If the marginal survival distributions are tail equivalent (i.e. F̄i(s) ∼ F̄j(s) as

s → ∞ for any i 6= j) and regularly varying with tail index α > 0, then the upper tail depen-

dent function and the upper exponent function b∗(x) and a∗(x) exist. Moreover, they satisfy the

following equations

1. b∗n(w) =
µ
(
[w−1/α,∞]

)
µ
(
[1,∞)× R̄+n−1

) and a∗n =
µ
(
[0,w−1/α]c

)
µ
(
([0, 1]× R̄+n−1)c

).
2.

µ ([w,∞])

µ([0,1]c)
=
b∗n(w−α)

a∗n(1)
and

µ ([0,w]c)

µ([0,1]c)
=
a∗n(w−α)

a∗n(1)
.

Through these results, the authors choose the norm ||.|| as sum-norm. If the dependence between

the variables is Archimedean copula of generator Φ satisfying (1 − Φ) ∈ RV0(−β) and if the

dependence is Archimedean survival copula of generator Φ satisfying Φ ∈ RV∞(−β), the limits

lim
s→∞

P(Sn>s)
P(X1>s)

exist and have integral forms. For more information, see Sun and Li (2010)[49],

Equations 3.3, 3.4 or Section 4.1.

Numerical approximation for dependence sums

A well-known method to calculate distributions of the sum of dependence random variables is

discretization of continuous distribution functions. For example, to approximate the continuous

distribution function of vector X, the vector X’ with discrete distribution function determined

by

• Upper: P(X’ = kh) = P(X ∈ (kh, (k+1)h]).

• Lower: P(X’ = kh) = P(X ∈ ((k-1)h,kh]).

• Dispersion : P(X’ = kh) = P(X ∈ ((k-1/2)h, (k+1/2) + h]).
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Figure 1.1: Azbenz ’s numerical method
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where h > 0 and k = (k1, k2, · · · , kn) ∈ Nn. The distribution function of sum P(Sn ≤ s = Kh)

where K ∈ N is approximated by

P(X’ ≤ Kh) =

∑
ki≤K∑

P(X’ = kh).

Note that results from the upper method are always higher than true probability while those

from lower method are smaller. Generally, these approaches can be applied for any risk structure.

In the context of calculating the sum of dependent regularly varying variables, they do not work

since marginal distributions have heavy tails (due to the problem of choosing the bandwidth h)

and because it is too hard to do the calculations in high dimension.

Arbenz et al. (2009)[6] presented a new numerical method to calculate the distribution of the

sum by constructing a sequence of hyper-rectangles which the combination converges quickly

to the hyper-triangle {(x1, x2, · · · , xn) ∈ Rn : x1 + x2 + · · ·+ xn > s}. According to Figure 1.1,

in each step, the probabilities in the gray squares are added, while the probability in the black

square is subtracted and so on.

Cossette et al. (2014)[32] used the same idea of approximating hyper-triangle by the combination

of hyper-rectangles to calculate lower bound (Figure 1.2) and upper bound (Figure 1.3) for the

probability 1 − z(s) = P(Sn ≤ s). The authors mentioned that the computations are fast and

converge to the exact value quickly with the assumption that the joint density function exists.

Moreover, the approximation is deterministic, hence without error on the calculated values, is

an advantage over simulation techniques.

As a whole, numerical methods by Arbenz and Cossette et al. can be applied for any positive

marginal distributions, any dependence structure and any range of s. The inconvenience comes
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Figure 1.2: Lower approximation of Cossette et al.
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Figure 1.3: Upper approximation of Cossette et al.
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from the calculation that takes a long time and lack precision in high dimension. Arbenz

mentioned that the method has good performances when n ≤ 7. (see Arbenz et al. (2009)[6]).

Calculation of dependent sums using simulation

Constructing an estimator Z(s) of z(s) = P(Sn > s) under a dependent assumption is much more

difficult under the case of independence. First, it is hard to simulate a dependent vector. Second,

several classical methods are based on conditional distributions: if vector X = (X1, · · · , Xn)

has the multivariate distribution function F (x1, · · · , xn) then the conditional distributions of



Chapter 1. General introduction 26

Xi|(Xi−1, · · · , X1) = (xi−1, · · · , x1) are calculated by

FXi|Xi−1,··· ,X1
(xi) = P(Xi ≤ xi|(Xi−1, · · · , X1) = (xi−1, · · · , x1))

=
δi−1F (x1, · · · , xi−1, xi,∞, · · · ,∞)

δx1 · · · δxi−1
/fi−1(xi−1, · · · , x1)

where fi−1(xi−1, · · · , x1) is the density of (Xi−1, · · · , X1). The procedure of simulating X is

then:

• Simulate w1, · · · , wn are i.i.d. Uniform(0, 1) random variables.

• Calculate x1 = F←1 (w1).

• For i = 2, 3, · · · , n, calculate xi by xi = F←Xi|Xi−1,··· ,X1
(wi).

However, almost all dependence structures do not have close forms for F←Xi|Xi−1,··· ,X1
(wi) while

numerical calculation of these n inverse functions will take a long time or impossible to do.

In fact, dependence structures are simulated based on some special stochastic representations

rather than the classical method. Beside the difficulties of simulating dependence structure,

another problem of estimating z(s) comes from the inefficiency of estimators. As we already

discussed, when z(s) is close to 0, the relative error of crude Monte Carlo estimator is equivalent

to [z(s)]−1/2 which is inefficient in rare event simulation.

There are some works relating to the calculations of tail distribution of dependent sums using

simulations. Blanchet and Rojas-Nandayapa (2011)[17] proposed a conditional Monte Carlo

estimator for z(s) = P(eX1 + eX2 + · · · + eXn > s) where X = (X1, X2, · · · , Xn) is an elliptic

vector. Note that if X is an elliptic vector, then it has the stochastic representation

X = µ+RAΘ i.e. for i = 1, 2, · · · , n : Xi = µi +R〈A[, i],Θ〉

where µ = (µ1, · · · , µn) ∈ Rn; R is a random variable; AAT = Σ the covariance matrix where

A[, i] is the ith row of A and Θ is a uniform vector on unit sphere S2
n = {θ1, · · · , θn : θ2

1+· · ·+θ2
n =

1}. Blanchet defined the function G(r, θ)

G(r, θ) =

n∑
i=1

exp(µi + r〈A[, i], θ〉)

where r ∈ R and θ ∈ S2
n. The probability P(eX1 + eX2 + · · · + eXn > s) becomes P(G(R,Θ) > s)

which resulted in conditional Monte Carlo estimator

L(s,Θ) = P(G(R,Θ) > s|Θ).
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With the assumption that random variable R has density fR and survival distribution F̄R satisfy

lim
s→∞

sfR(s)

[F̄R(s)]1−ε
= 0 ∀ ε > 0.

and function G(.) satisfies assumptions (1),(2),(3) and (4) in 5th page in Blanchet (2011), this

estimator is logarithmically efficient. Kortschak and Hashorva (2013)[41] modified Asmussen

and Kroese’s method[10] to estimate tail distribution of the sum of log-normal variables and

resulted in an estimator with vanishing relative error. As stated in Kortschak and Hashorva

(2013) ”the reason that Asmussen Kroese’s estimator has a good asymptotic behavior in the

asymptotically independent case is that heuristically when the sum is large then one element is

large and all the others behave in a normal way”. Applying this method for the asymptotically

independent structure as log-normal vector, the performance of Kortschak and Hashorva’s es-

timator is certainly better than that of Blanchet and Rojas-Nandayapa. Suppose that X is a

log-normal vector, the probability P(
n∑
i=1

eXi > s) is developed by the Asmussen and Kroese’s

method:

P(
n∑
i=1

eXi > s) =

(
n∑
i=1

P(eXi > s)

)
×

n∑
j=1

P(L = j)

P(
n∑
i=1

eXi > s,Xj = Mn)

P(eXj > s)

where Mn = max(X1, · · · , Xn) and L is discrete random variable taking the value j = 1, 2, · · · , n
with probability P(L = j) = P(eXj>s)

n∑
i=1

P(eXi>s)
respectively. Then, the estimator is proposed by

ZMAK(s) =

(
n∑
i=1

P(eXi > s)

)
×

n∑
j=1

I{L=j}
Zj(s)

P(eXj > s)

where Zj = P(
n∑
i=1

eXi > s,Xj = Mn|N−j) with N−j = (N1, N2, · · · , Nj−1, Nj+1, · · · , Nn) are

(n− 1) standard normal random variables. For each j, the matrix A which AAT = Σ is chosen

in such a way that the A[j, k] = 0 for all k 6= j.

Our results

In the fourth chapter, we propose different approaches to simulate the probability z(s) = P(Sn >

s) with the assumptions that marginal distributions are regularly varying and the dependence

is an Archimedean copula or the Archimedean survival copula. The simulation has the advan-

tage that it is applicable when marginal distributions are different. Moreover, the results via
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simulation can be improved by increasing the number of replications. Our estimators are con-

structed based on the procedure of simulating a conditional Archimedean copula in Brechmann

(2013)[19] and the stochastic representation of Archimedean copulas in McNeil (2009)[42].

Brechmann et al. provided an algorithm to simulate conditional vector (X1, · · · , Xn|Xi = xi)

under the dependence structures of elliptic copulas, Archimedean copulas and vines copulas.

In this section, we are interested in the type of conditional vector as (X1, · · · , Xn|Xi ∈ A)

where the dependence is an Archimdean copula or the Archimedean survival copula and A is

an extreme region. As we reviewed, classical method of simulating dependent vector does not

work because the inverse functions of conditional distributions have no close forms. Brechmann

et al. introduced a procedure to simulate the vector (X1, · · · , Xn|Xi ∈ A) using an intermediate

random variable Z distribution function of which is called Kendall distribution. If copula of

U = (U1, · · · , Un) is C then Kendall distribution function is defined by FZ(t) = P(C(U) ≤ t).

Under Archimedean copulas, the inverse of conditional distributions of Ui|Ui−1, · · · , U1 has not

got close forms but the inverses function of conditional distributions of Ui|Z,Ui−1, · · · , U1 do.

Archimedean copulas have a nice stochastic representation according to McNeil (2009) and it is

useful to construct our estimators. If U = (U1, · · · , Un) is an Archimedean copula of generator

Φ then

(U1, · · · , Un) = (Φ(RW1), · · · ,Φ(RWn))

where R is a positive random variable whose survival distribution function is calculated from

Φ and its derivatives; W = (W1, · · · ,Wn) is a uniform vector on unit simplex Sn = {w =

(w1, · · · , wn) :
n∑
i=1

wi = 1}.

Our first estimator is developed from the procedure of simulating conditional vector under

Archimedean copula of Brechmann et al. (2013). The probability P(Sn > s) is written

P(Sn > s) = P(Mn > s) + P(Sn > s, s/n < Mn ≤ s).

Note that the probability P(Mn > s) is determined by the marginal distributions and the copula

function (see Section 4.3). We apply Asmussen and Kroese’s method to obtain

P(Sn > s, s/n < Mn ≤ s) =

n∑
i=1

P(Sn > s,Xi = Mn, s/n < Xi ≤ s)

=

n∑
i=1

P(Xi ∈ (s/n, s]) P(Sn > s,Xi = Mn|s/n < Xi ≤ s).
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Via this formula, we can propose the first estimator for z(s), called ZNR1(s), where conditional

probability P(Sn > s,Xi = Mn|s/n < Xi ≤ s) is estimated by an indicator function. Because

P(Xi ∈ (s/n, s]) is determined and less than z(s) for all i and indicator functions take the value

0 or 1, we can see that the estimator ZNR1(s) has bounded relative error. Note that this formula

can be obtained for any dependence structure, this estimator can be applied for any type of

dependence with the condition that we can simulate the vector (X1, · · · , Xn|s/n < Xi ≤ s) to

result in indicator functions.

Our second estimator called ZNR2(s) is obtained from the stochastic representation of

Archimedean copula of McNeil (2009)[42]. The estimation technique is similar to conditional

Monte Carlo method used by Blanchet and Rojas-Nandayapa to estimate the sum of log-elliptic

random variable. The conditional vector of our estimator is uniform vector on the unit simplex

instead of uniform vector on the unit sphere. Suppose that vectors X = (X1, · · · , Xn) and Y =

(Y1, · · · , Yn) are of the same marginal distribution functions F1, · · · , Fn while the dependence

of X is an Archimedean copula and the dependence of Y is an Archimedean survival copula,

then we have stochastic representations of X and Y

(X1, · · · , Xn)
d
= (F←1 (Φ(RW1)), · · · , F←n (Φ(RWn))).

(Y1, · · · , Yn)
d
= (F̄←1 (Φ(RW1)), · · · , F̄←n (Φ(RWn))).

The probability P(Sn > s,Mn ≤ s) will be estimated conditionally on W ∈ Sn

ZXNR2(s) = P(MX
n > s) + P

(
n∑
i=1

F←i (Φ(RWi)) > s, max
i=1,2,··· ,n

{F←i (Φ(RWi))} ≤ s|W

)

ZYNR2(s) = P(MY
n > s) + P

(
n∑
i=1

F̄←i (Φ(RWi)) > s, max
i=1,2,··· ,n

{F̄←i (Φ(RWi))} ≤ s|W

)
.

Quality of this estimator will be discussed in details in Section 4.3

Our third estimator called ZNR3(s) is presented by mixing method of Asmussen and Kroese

combined with techniques of Conditional Monte Carlo where conditional vector is W ∈ Sn. We

have the probability P(Sn > s,Mn ≤ s) as follows

P(Sn > s,Mn ≤ s) = P (Sn > s,Mn−1 ≤ λs,Mn ≤ s) + P (Sn > s,Mn−1 > λs,Mn ≤ s)

for all λ ∈ (0, 1/n). Asmussen and Kroese’s method has good performances when the sum

of variables is dominated by a single Xi while the others have normal values. That is why

this method is efficient in estimating P(Sn > s,Mn−1 ≤ λs,Mn ≤ s). For the second term,

P(Sn > s,Mn−1 > λs,Mn ≤ s), there are at least two variables taking large values, we estimate
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it conditionally on W and the result has a good asymptotic behavior (see Section 4.3). Although

this estimator has better numerical performances than the first and the second ones (see Section

4.4) but its quality is not verified because Asmussen and Kroese’s method is not efficient under

strong dependence or tail dependence structures.

Our fourth estimator is developed from the probability P(Sn > s,Mn ≤ s) which is written

by

P(Sn > s,Mn ≤ s) = P(Sn > s, κs < Mn ≤ s) + P(Sn > s,Mn ≤ κs) for κ ∈ (1/n, 1).

Simulation technique here is mixed by the methods in simulating ZNR1(s) with the method

in simulating ZNR2(s). Indeed, the first term in the above equation is estimated similarly to

ZNR1(s) since it can be written by

P(Sn > s, κs < Mn ≤ s) =

n∑
i=1

P(Sn > s, κs < Xi ≤ s,Xi = Mn)

=

n∑
i=1

P(Xi ∈ (κs, s])P(Sn > s,Xi = Mn|κs < Xi ≤ s).

And the second term is written by

P(Sn > s,Mn ≤ κs) = P
(
Sn > s,Mn ≤ κs,Mn−1 >

1− κ
n− 1

s

)
which contains Mn−1 >

1−κ
n−1 × s, i.e this is the situation where there are at least two variables

in the sum taking large values. Therefore, this probability can be estimated conditionally on

W and has bounded relative error.

1.3 Intermediary proofs

Verifying the series of Albrecher, Hipp and Kortschak (2010) in the case of Pareto

Suppose that α ∈ R+/N, we calculate the sum of n i.i.d. Pareto random variables of parameter

(α, β). With k = [α + 1], following the Theorem 1.8 in Albrecher, Hipp and Kortschak (2010)

[1]: Ḡ(s) = ak(s) +O
(
F̄ (k−1)(s)

)
where

ak(s) = a1(s) + n

k−2∑
j=0

(−1)jf (j)(s)
E
[
(X1 + · · ·+Xn−1)j+1

]
(j + 1)!

.
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In the case of Paretos with parameter (α, β), we have

a1(s) = nβαs−α

f (j)(s) = (−1)jβαα(α+ 1) · · · (α+ j)s−α−j−1

E
[
(X1 + · · ·+Xn−1)j+1

]
=

∑
j1+···jl=j+1

(j + 1)!

(j1)! · · · (jl)!

l∏
r=1

αβjr

α− jr
.

Hence, the survival distribution Ḡ(s) can be written as

Ḡ(s) = nβα
(
s−α +

k−1∑
j=1

α(α+ 1) · · · (α+ j − 1)

j!

∑
∑
jl=j

(j)!

(j1)! · · · (jl)!

l∏
r=1

αβjr

α− jr
s−(α+j)

)
+O
(
s−(α+k−1)(s)

)
.

Proof of Proposition 1.12

The density function of X(n−1) is bounded by

fX(n−1)
(x) = n(n− 1) [F (x)]n−2F̄ (x) f(x) ≤ n(n− 1)F̄ (x) f(x)
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The second moment of Z3(s) is evaluated separately over the regions X(n−1) ≤ s/n and X(n−1) >

s/n. Note that when X(n−1) ≤ s/n then s− S(n−1) ∨X(n−1) = s− S(n−1).

E([Z3(s)]2)

= E

 F̄ (s− S(n−1)

)
F̄ (X(n−1))

2

, X(n−1) ≤ s/n

+ E

 F̄ (s− S(n−1)UX(n−1)

)
F̄ (X(n−1))

2

, s/n < X(n−1)


≤ E

 F̄ (s− S(n−1)

)
F̄ (X(n−1))

2

, X(n−1) ≤ s/n

+ P(s/n < X(n−1))

≤ E

 F̄ (s/n)

F̄ (X(n−1))

2

, X(n−1) ≤ s/n

+

∞∫
s/n

n(n− 1)F̄ (x) f(x)dx

≤ [F̄ (s/n)]2E

 1

F̄ (X(n−1))
,

2

, X(n−1) ≤ s/n

+ n(n− 1)

F̄ (s/n)∫
0

udu

∼ n2+2α[z(s)]2E

 1

F̄ (X(n−1))

2

, X(n−1) ≤ s/n

+
n3+2α(n− 1)[z(s)]2

2

≤ n2+2α[z(s)]2 ×

n(n− 1)

2
+

s/n∫
0

F̄ (x) f(x)

[F̄ (x)]2
dx


= n2+2α[z(s)]2 ×

n(n− 1)

2
− (2 + 2α) log(n)− log(z(s))

 .

It can be seen that the last value is asymptotically upper bounded by [z(s)]2−ε for all ε > 0,

which implies that Z3(s) is a logarithmically efficient estimator.
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Chapter 2

Exact computation for the sum of

independent Pareto variables

Asymptotic expansions for the tails of the sums of random variables with regularly varying

tails are mainly derived in the case of identically distributed random variables or in the case

of random variables with the same tail index. Moreover the higher-order terms are often given

under the condition of existence of a moment of the distribution. In this paper we obtain

infinite series expansions for convolutions of Pareto distributions with non-integer tail-indices.

The Pareto random variables may have different tail-indices and different scale parameters.

We naturally found the same constants for the first terms as given in the previous asymptotic

expansions in the case of identically distributed random variables, but we are now able to give

the next additional terms. Since our series expansion is not asymptotic, it may be also used to

compute the values of quantiles of the distribution of the sum as well as other risk measures

as the Tail Value at Risk. Examples of values are provided for the sum of at least five Pareto

random variables and are compared to those determined via previous asymptotic expansions or

via simulations.

2.1 Introduction

In recent years the class of heavy-tailed distributions has been becoming more and more impor-

tant in the domain of risk management (see e.g. [10]). The distributions with regularly varying

tails are an important subclass that is traditionally used by actuaries to model catastrophic

losses in an insurance portfolio, by risk managers in banks to quantify operational risk (the risk

of losses resulting from inadequate or failed internal processes, people and systems, or external

AMS 1991 subject classification: Primary: ; Secondary:
Key words and phrases: convolutions, infinite series expansions, Pareto distributions, risk measures
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events), by economists to model the income distribution of populations... A positive random

variable X is said to have a regularly tails with index α > 0, if

P (X > x) = x−αL(x), x ≥ 0,

where L is a slowly varying function at infinity. A central example is the Pareto distribution

for which the slowly varying function is equal to a constant. Its survival distribution function

is given by

P (X > x) =

(
x

β

)−α
, x ≥ β,

where β > 0 is called the scale parameter.

The tail probabilities of the sums of independent random variables with regularly varying tails

are of primary interest for an efficient quantitative risk managment. Asymptotic expansions

for these probabilities have been mainly studied in the case of identically distributed random

variables. Albrecher, Hipp and Kortschak ([2]) provide an overview of available results on

asymptotic approximations and propose a method to get an higher-order expansion under the

assumption that the survival distribution function is smoothly varying with index α and order

m (i.e. it is eventually m-times continuously differentiable and its mth derivative is a regularly

varying function with index −m−α). Assume that X1, . . . , Xn are independent and identically

distributed random variables with a common survival distribution function F̄ which is smoothly

varying with index α > 0 and order dαe. For m = dαe < α+ 1, they prove that

P (X1 + . . .+Xn > s) = nF̄ (s) + n
m−1∑
k=1

(−1)k−1 E
[
(X1 + . . .+Xn−1)k

]
k!

f (k−1) (s) (2.1)

−

(
n

2

)
F̄ (s)2 (1− 2α)B (1− α, 1− α) + o(F̄ (s)2)

where f (j) (s) is the jth derivative of the density probability function and B is the Beta function.

An approximation is also given when m = α+ 1.

The case of the sum of not identically distributed random variables has been little studied.

Geluk, Peng and de Vries ([4]) investigate the asymptotic behavior of the tail of the convolution

of two regularly varying random variables with the same tail index and under a second order

regular variation condition. Nadarajah and Kotz ([11]) provide an asymptotic expansion of the

density function of the convolution of two Lomax distributions (essentially Pareto distributions

that have been shifted so that their support begin at zero). Their expansion is based on the

Appell function of the first kind and can not be used to get the survival distribution function in

a closed form. Both previous approaches do not seem to be easily extended to more than two

random variables. Barbe and McCormick ([4]) consider the sum of n regularly varying random
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variables with the same tail index and such that the survival distribution functions have an

asympotitic expansion in powers of s−1. They obtain a class of distributions which is stable by

convolution and give algebraic rules to compute the coefficients of the asymptotic expansion.

This expansion is however limited to the terms for which the moments of the random variables

exist.

In this paper, we decide to focus on the case of the sum of Pareto random variables. Although

the Pareto distribution is simple, the distribution of the sum of two or more independent Pareto

random variables is not less simple than the distributions of the sums of other regularly varying

random variables. In particular very few explicit analytical expressions of the convolutions are

known. In [8], Hagstroem provides exact results for the sum of two and three random variables

when α = β = 1. In [6], Brennan, Reed and Sollfrey derive series expansions of the probability

density functions for the case of the sum of two or three Pareto random variables with the same

scale parameter β = 1 and non-integer tail-indices. In [5], Blum obtains a series expansion of

the probability density function of the sum of n independent and identically distributed Pareto

random variables with β = 1 and 0 < α < 2 (α 6= 1). More recently Ramsay provides integral

representations of the probability density functions of the sums of n independent and identically

distributed Pareto random variables for the case where β > 0 and (i) α is a positive integer (see

[13]) or (ii) α is not a positive integer (see [14]). A related work (Albrecher and Kortschak, [3])

also introduces an integral representation for the ruin probability with Lomax claims.

The main result of the paper (Theorem 1) provides an infinite series expansion in the case of

Pareto random variables with non-integer tail-indices X1(α1, β1), . . . , Xn(αn, βn). The Pareto

random variables may have different tail-indices and different scale parameters. As a by-product

we derive the series expansion for the sum of two independent infinite Hall-Pareto random

variables. We also provide new analytical expressions for the probability survival functions of

sums of two independent Pareto random variables with integer tail-indices.

We naturally found the same constants for the first terms as given in the previous asymptotic

expansions in the case of identically distributed random variables, but we are now able to give

the next additional terms. Since our series expansion is not asymptotic, it may be also used to

compute the values of quantiles of the distribution of the sum as well as other risk measures

as the Tail Value at Risk. Examples of values are provided for the sum of at least five Pareto

random variables and are compared to those determined via previous asymptotic expansions or

via simulations.

This paper includes five additional sections. In the second section we state our main result about

the series expansions for the probability survival functions of sums of independent Pareto random

variables with non-integer tail-indices. The third section aims at presenting the method for

proving the main result and provides several important intermediary results. The next section

presents series expansions for the sum of two Pareto random variables with integer tail-indices.



Chapter 2. Exact computation for the sum of independent Pareto variables 40

In Section 5, numerical applications are given. We first discuss the error that is made when using

a truncated series expansion and compare our approximation to the asymptotic approximation

proposed by Albrecher, Hipp and Kortschak ([2]). Then our method is used for approximating

the values of high quantiles and their corresponding Tail Value at Risk for the distribution of the

sum of at least five Pareto random variables. These values are compared to those determined

via simulations. We also give some comments on the way the probability survival functions of

the sums of Pareto random variables with integer tail-indices can be approximated by series

expansions with respective almost-integer tail-indices. All the proofs of the results of Sections

3 and 4 are gathered in the last section.

2.2 Main result

We first introduce some notation. We denote by Γ the Gamma function, i.e. Γ(α) =
∫∞

0 e−ttα−1dt

for α ∈ R\Z−, and by B the Beta function given by B(α, γ) = Γ(α)Γ(γ)/Γ(α + γ) for

α, γ ∈ R\Z−, α+ γ ∈ R\Z−.

Let, for α ∈ R\Z− and k ∈ N∗,
h(α, k) =

1

kB(α, k)

and set h(α, 0) = 1.

The family of functions (cn)n≥1is defined in the following way: for (α1, α2, . . . , αn) ∈ (R\Z−)
n
,

if there exit some different coefficients j1, . . . , jk ∈ {1, . . . , n} with 1 ≤ k ≤ n such that
∑k

l=1 αjl

is integer then cn(α1, α2, . . . , αn) = 0, else

cn(α1, α2, . . . , αn) =
Γ(1− α1) . . .Γ(1− αn)

Γ(1−
∑n

i=1 αi)
.

The family of functions (wn)n≥1is defined for ((α1, β1), . . . , (αn, βn), k) ∈ (R+\N× R+)n × N∗

by

wn((α1, β1), . . . , (αn, βn), k) =

k1+...+kn=k∑
0≤k1,...,kn≤k

k!

k1! . . . kn!

n∏
j=1

αjβ
kj
j

αj − kj
.

Let Θn = {1, 2, . . . , n} and Θ1,n,Θ2,n, . . . ,Θln,n be the ln = 2n−2 subsets of Θn different from ∅
and Θn. We denote by Θc

i,n = Θn\Θi,n the relative complement of Θi,n in Θn, and for each subset

Θi,n = {i1, i2, . . . , ij} of size |Θi,n| = j and k ∈ N, we define for ((α1, β1), . . . , (αn, βn), k) ∈
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(R+\N× R+)n × N∗

c(Θi,n) = c|Θi,n|(αi1 , αi2 , . . . , αij )

h(Θi,n, k) = h

 j∑
p=1

αip , k


w(Θi,n, k) = w|Θi,n|((αi1 , βi1), (αi2 , βi2), . . . , (αij , βij ), k).

We are now able to give the series expansion for the sum of n independent Pareto random

variables with non-integer tail-indices.

Theorem 2.1. If X1(α1, β1), . . . , Xn(αn, βn) are n independent Pareto random variables such

that α1, . . . , αn ∈ R+\N, then, for s ≥ β1 + . . .+ βn,

P (X1 + . . .+Xn > s)

=

ln∑
i=1

( ∏
j∈Θi,n

β
αj
j

)
c(Θi,n)s

−
∑
j∈Θi,n

αj

[ ∞∑
k=0

h(Θi,n, k)w(Θc
i,n, k)s−k

]
+
( n∏
j=1

β
αj
j

)
c(Θn)s−

∑n
j=1 αj .

The survival distribution function of the sum may be rewritten in the following way: for s ≥
β1 + . . .+ βn,

P (X1 + . . .+Xn > s)

=

ln∑
i=1

( ∏
j∈Θi,n

P (Xj > s)
)
c(Θi,n)

[ ∞∑
k=0

h(Θi,n, k)w(Θc
i,n, k)s−k

]
+ c(Θn)

n∏
j=1

P (Xj > s) .

The series expansion is therefore build as the sum of products of the survival functions of the

Xi with series expansions in power of s−1. This is similar (at least for the first terms) to the

asymptotic approximations given in Geluk, Peng and de Vries ([4]) for two positive regularly

varying random variables.

In the case of identically distributed Pareto random variables X1(α, β), . . . , Xn(α, β), Theorem

2.1 provides the following series expansion: for s ≥ nβ,

P (X1 + . . .+Xn > s)

=

n−1∑
j=1

(
n

j

)
βjα

Γ(1− α)j

Γ(1− jα)
s−jα

∞∑
k=0

1

kB(jα, k)

k1+...+kn−j=k∑
0≤k1,...,kn−j≤k

k!

k1! . . . kn−j !

n−j∏
r=1

αβkr

α− kr

 s−k
+βnα

Γ(1− α)n

Γ(1− nα)
s−nα.

Let us compare the terms of our expansion with those of approximation (2.1) proposed by

Albrecher, Hipp and Kortschak. We can choose m = dαe since the Pareto survival probability

function is infinitely differentiable. The first m+1 terms of our expansion are obtained for j = 1
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with k = 0, . . . ,m− 1 and j = 2 with k = 0. In the case of a Pareto random variable X(α, β),

we have, for k = 1, . . . ,m− 1,

f (k−1) (s) = (−1)k−1 βα
[∏k−1

i=0
(α+ i)

]
s−α−k, s ≥ β,

E
[
(X1 + . . .+Xn−1)k

]
= wn−1((α, β), . . . , (α, β), k).

Simple calculations show that we get the same expansion for the first m + 1 terms. The next

terms of our expansion are obtained for j = 1 with k = m

nβα

mB(α,m)

k1+...+kn−1=m∑
0≤k1,...,kn−1≤m

k!

k1! . . . kn−1!

n−1∏
r=1

αβkr

α− kr

 s−α−m,
then j = 2 with k = 1, and so on.

2.3 Outline of the proof of the main result and intermediary

results

The proof of Theorem 2.1 goes by induction. We first study the case of the sum of two standard

Pareto random variables (“standard” means that the scale parameter of the Pareto random

variables is equal to 1) and the case of two (non-standard) Pareto random variables. Then we

introduce the class of the Hall infinite-Pareto distribution and give a calculation rule to derive

the series expansion for the sum of two Hall infinite-Pareto random variables. The result is

then used to derive the way to build the series expansion for the sum of three (or more) Pareto

random variables. The proofs of the propositions given in this section have been postponed to

Section 2.6.

We first give another expression for the function c2. For α1, α2 ∈ R+\N, j, l ∈ N and s > 1, let

ηj,l(s, α1, α2) = s−α1

l∑
k=j

α2

(α2 − k)
h(α1, k)s−k.

Note that the sequences of partial sums, η0,n(s, α1, α2) and η0,n(s, α2, α1), are uniformly-convergent

sequences in s on (1,∞) and therefore we may introduce, for α1, α2 ∈ R+\N, β1, β2 ∈ R+ and

s > max(β1, β2),

ς(s, (α1, β1), (α2, β2)) = sα1+α2

(
1

βα1
1 βα2

2

− η0,∞

(
s

β2
, α1, α2

)
− η0,∞

(
s

β1
, α2, α1

))
.
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Proposition 2.2. For α1, α2 ∈ R+\N, β1, β2 ∈ R+,

c2(α1, α2) = ς(2, (α1, 1), (α2, 1)) = ς((β1 + β2), (α1, β1), (α2, β2)).

Note moreover that, for α1, α2 ∈ R+\N and an integer k ≥ 1,

c2(α1 + k, α2) =
(α1 + α2)(α1 + α2 + 1) . . . (α1 + α2 + k − 1)

α1(α1 + 1) . . . (α1 + k − 1)
c2(α1, α2),

and that if (α1 + α2) is an integer number, then c2(α1, α2) = 0.

We now consider the case of the sum of two standard Pareto random variables.

Proposition 2.3. If X1(α1, 1), X2(α2, 1) are two independent Pareto random variables such

that α1, α2 ∈ R+\N, then, for s ≥ 2,

P (X1 +X2 > s) = η0,∞(s, α1, α2) + η0,∞(s, α2, α1) + c2(α1, α2)s−(α1+α2).

We then study the case of the sum of two Pareto random variables having different scale pa-

rameters.

Proposition 2.4. If X1(α1, β1), X2(α2, β2) are two independent Pareto random variables such

that α1, α2 ∈ R+\N, then, for s ≥ β1 + β2,

P (X1 +X2 > s) = βα1
1

∞∑
k=0

h(α1, k)w1((α2, β2), k)s−α1−k + βα2
2

∞∑
k=0

h(α2, k)w1((α1, β1), k)s−α2−k

+βα1
1 βα2

2 c2(α1, α2)s−(α1+α2).

Before giving the series expansion for the sum of three independent Pareto random variables,

we study the convolution of two infinite Hall-Pareto random variables. We say that a random

variable H belongs to the class of the infinite Hall-Pareto distributions, H ∼ Hall((αi, γi)i≥1),

if there exist constants 0 < α1 < α2 < . . ., γi ∈ R and r > 0 such that
∑∞

i=1 γir
−αi = 1 and

P (H > x) =
∞∑
i=1

γix
−αi

is a decreasing function on (r,∞). This class has the property of stability by convolution like

the class P+
α,m introduced by Barbe and McCormick [4].

Proposition 2.5. Let H1 ∼ Hall((αi,1, γi,1)i≥1) and H2 ∼ Hall((αi,2, γi,2)i≥1) two independent

random variables. For i ≥ 1 and j ≥ 1, define Xi(α1,i, r1) and Yj(α2,j , r2) as two independent
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Pareto random variables. Then, for s ≥ r1 + r2,

P (H1 +H2 > s) =
∞∑
i=1

∞∑
j=1

γ1,i

r
α1,i

1

γ2,j

r
α2,j

2

P (Xi + Yj > s) .

This result is helpful to construct the series expansion for the sum of 3 independent Pareto

variables because the sum of 2 independent Pareto variables has an infinite Hall-Pareto distri-

bution.

Proposition 2.6. If X1(α1, β1), X2(α2, β2) and X3(α3, β3) are three independent Pareto ran-

dom variables such that α1, α2, α3 ∈ R+\N, then, for s ≥ β1 + β2 + β3,

P (X1 + . . .+Xn > s)

=

l3∑
i=1

( ∏
j∈Θi,3

β
αj
j

)
c(Θi,3)s

−
∑
j∈Θi,3

αj

[ ∞∑
k=0

h(Θi,3, k)w(Θc
i,3, k)s−k

]
+
( 3∏
j=1

β
αj
j

)
c(Θ3)s−

∑3
j=1 αj .

The end of the proof of Theorem 2.1 goes now by induction. Consider the case of the sum of

n + 1 random variables assuming that the series expansion is true for the sum of n random

variables. Then it suffices to follow the same lines as that given in the proof of Proposition 2.6

to conclude that the series expansion is also true for the sum of n + 1 random variables. In

order to shorten the paper, we do not give more details about the end of the proof, but they

are, however, available upon request.

2.4 Some series expansions in the case of integer tail-indices

It is well-known that asymptotic expansions differ when the tail indices of the regularly varying

distributions are integer (see e.g. [2]). It is easily seen that it is also the case for the Pareto

distributions since the functions wn are not defined for some values of k if one of the tail-indices

is integer. We were not able to give a general result for the sum of n Pareto random variables

with integer tail-indices, but we provide at least new results in the case where n = 2. The

proofs of the propositions given in this section have also been postponed to Section 2.6.

We first consider the case of the sum of two standard Pareto random variables with integer

tail-indices. We define the family of functions (Qj (·))j≥0 on (0, 1) by Q0 (u) = − ln (1− u)

and the recurrence relation Qj+1 (u) = uQ′j (u) for j ≥ 0. Note that the functions may also

be defined as series expansions, Qj (u) =
∑∞

k=1 k
j−1uk. Moreover, for m2 ∈ N and x ∈ R, let

Φ0,m2 (x) = 1 and, for m1 ∈ N∗, let

Φm1,m2 (x) = (x+m2 + 1)...(x+m1 +m2).
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Then define the triangular array of constants (ϕj,m1,m2)j=0,...,m1
by

Φm1,m2 (x) = ϕ0,m1,m2 + ϕ1,m1,m2x+ ...+ ϕm1,m1,m2x
m1 .

Proposition 2.7. If X1(m1, 1), X2(m2, 1) are two independent Pareto random variables such

that m1,m2 ∈ N∗, then, for s ≥ 2,

P (X1 +X2 > s) = η0,m2−1(s,m1,m2) + η0,m1−1(s,m2,m1) +
2

B(m1,m2)
s−(m1+m2) ln

(s
2

)
−s−(m1+m2) m2

(m1 − 1)!

m1−1∑
j=0

ϕj,m1−1,m2

(
Qj
(
s−1
)
−Qj (0.5)

)
−s−(m1+m2) m1

(m2 − 1)!

m2−1∑
j=0

ϕj,m2−1,m1

(
Qj
(
s−1
)
−Qj (0.5)

)
+ (1− η0,m2−1(2,m1,m2)− η0,m1−1(2,m2,m1))

(s
2

)−(m2+m1)
.

It is also possible to characterize the survival distribution function of the sum of two standard

Pareto random variables with integer tail-indices in the following way.

Proposition 2.8. If X1(m1, 1), X2(m2, 1) are two independent Pareto random variables such

that m1,m2 ∈ N∗ and m1 ≥ m2, then, for s ≥ 2,

P (X1 +X2 > s) =
1

s(s− 1)m1−1
+

1

s(s− 1)m2−1

+

m2−1∑
i=1

(m1 +m2 − 1)(m1 +m2 − 2) . . . (m1 +m2 − 2i)

(m1 − 1)(m1 − 2) . . . (m1 − i)(m2 − 1)(m2 − 2) . . . (m2 − i)
s−2i

×
[

1

(s− 1)m1−i

(
m1 − i

m1 +m2 − 2i
− 1

s

)
+

1

(s− 1)m2−i

(
m2 − i

m1 +m2 − 2i
− 1

s

)]
+

(m1 +m2 − 1)(m1 +m2 − 2) . . . (m1 −m2 + 1)

(m1 − 1)(m1 − 2) . . . (m1 −m2 + 1)(m2 − 1)!
s−(m1+m2)f(s,m1 −m2 + 1, 1)

where, for j ∈ N,

f(s, j + 1, 1) =

j∑
k=1

sk

k

(
1− 1

(s− 1)k

)
+ 2 log (s− 1) .

For examples, if m1 = m2 = 1, we get

P (X1 +X2 > s) = 2s−1 + 2s−2 log (s− 1) , s ≥ 2,

if m1 = m2 = 2, we get

P (X1 +X2 > s) = 2s−2 + 8s−3 − 4s−3/(s− 1) + 12s−4 log (s− 1) , s ≥ 2,
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if m1 = 4,m2 = 3 we get

P (X1 +X2 > s)

=
1

s(s− 1)3
+

1

s(s− 1)2
+

5

s2

[
1

(s− 1)3

(
3

5
− 1

s

)
+

1

(s− 1)2

(
2

5
− 1

s

)]
+

30

s4

[
1

(s− 1)2

(
2

3
− 1

s

)
+

1

(s− 1)

(
1

3
− 1

s

)]
+

60

s7

[
s(1− 1

s− 1
) + 2 log(s− 1)

]
.

We are also able to give the exact expression of the survival distribution function of the sum of

two Pareto random variables with integer tail-indices having different scale parameters.

Proposition 2.9. If X1(m1, β1), X2(m2, β2) are two independent Pareto random variables such

that m1,m2 ∈ N∗, then, for s ≥ β1 + β2,

P (X1 +X2 > s)

=

(
β1

β2

)α1

η0,m2−1

(
s

β2
,m1,m2

)
+

(
β2

β1

)α2

η0,m1−1

(
s

β1
,m2,m1

)
+2βm1

1 βm2
2

1

B(m1,m2)
s−(m1+m2) ln

(
s

β1 + β2

)
−
(
β1

β2

)α1
(
s

β2

)−(m1+m2) m2

(m1 − 1)!

m1−1∑
j=0

ϕj,m1−1,m2

(
Qj
(
β2s
−1
)
−Qj (β2/(β1 + β2))

)
−
(
β2

β1

)α2
(
s

β1

)−(m1+m2) m1

(m2 − 1)!

m2−1∑
j=0

ϕj,m2−1,m1

(
Qj
(
β1s
−1
)
−Qj (β1/(β1 + β2))

)
+

(
1−

(
β1

β2

)α1

η0,m2−1

(
β1 + β2

β2
,m1,m2

)
−
(
β2

β1

)α2

η0,m1−1

(
β1 + β2

β1
,m2,m1

))
×
(

s

β1 + β2

)−(m2+m1)

.

If m1 ≥ m2, then

P (X1 +X2 > s) =
βm1

1

s(s− β2)m1−1
+

βm2
2

s(s− β1)m2−1

+

m2−1∑
i=1

(m1 +m2 − 1)(m1 +m2 − 2) . . . (m1 +m2 − 2i)

(m1 − 1) . . . (m1 − i)(m2 − 1) . . . (m2 − i)
βi1β

i
2

s2i

×

[
βm1−i

1

(s− β2)m1−i

(
m1 − i

m1 +m2 − 2i
− β2

s

)
+

βm2−i
2

(s− β1)m2−i

(
m2 − i

m1 +m2 − 2i
− β1

s

)]

+
(m1 +m2 − 1) . . . (m1 −m2 + 1)

(m1 − 1) . . . (m1 −m2 + 1)(m2 − 1)!

βm1
1 βm2

2

s(m1+m2)
g(s,m1 −m2 + 1, 1;β1, β2)

where, for j ∈ N,

g(s, j + 1, 1;β1, β2) =

j∑
k=1

sk

k

(
1

βk1
− 1

(s− β2)k

)
+ log

(
s

β1
− 1

)
+ log

(
s

β2
− 1

)
.
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2.5 Numerical applications

Theorem 2.1 provides series expansions that are not asymptotic. They may be used to compute

the values of tail probabilities for any level s, the values of quantiles as well as other risk

measures.

In practice, the series expansion is truncated to compute the values of the tail probabilities. We

first give an asymptotic upper bound for the error due to the truntation. Then we compare our

approximations to those proposed by Albrecher, Hipp and Kortschak ([2]) for the case of the

sum of five identically distributed Pareto random variables. We have also chosen to illustrate

the interest of our approximation by considering two examples of computations of Values at Risk

and of Tail Values at Risk. In insurance risk management, they are widely used to quantify

the risk of loss on a specific portfolio. For a given portfolio, X1 + . . . + Xn, and a probability

κ, VaRκ is defined as the minimum threshold value such that the probability that loss on the

portfolio exceeds this value is smaller than 1− κ

VaRκ(X1 + . . .+Xn) = inf{x ∈ R : P (X1 + . . .+Xn > x) ≤ 1− κ},

and TVaRκ is defined as the expected value of the loss given that the loss is larger than VaRκ

TVaRκ(X1 + . . .+Xn) = E (X1 + . . .+Xn|X1 + . . .+Xn > V aRκ(X1 + . . .+Xn)) .

In the first example we consider the sum of five and ten independent Pareto random variables

with non-integer tail-indices and in the second example the sum of five independent Hall-Pareto

random variables with non-integer tail-indices. Finally we consider the sum of ten standard

Pareto random variables with unit tail-indices and study the quality of approximation by series

expansions with almost-integer indices.

Remark 2.10. From a numerical point of view, it is also possible to consider the inversion of the

following Laplace transform

L
(
F̄n
)

(t) =

∫ ∞
0

exp (−ts)P (X1 + . . .+Xn > s) ds =
1

t

[
1−

n∏
i=1

E [exp (−tXi)]

]

where

E [exp (−tXi)] = αi(tβi)
αi

∫ ∞
tβi

u−αi−1e−udu = αi(tβi)
αiΓ(−αi, tβi)

with Γ(−αi, t) the (upper) incomplete Gamma function. This function may be calculated by a

series expansion

Γ(−αi, t) = Γ(−αi)−
∞∑
k=0

(−1)k
tk−αi

(k − αi)k!
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(see formula 6.5.29 in [1]). Thus the Laplace transform L
(
F̄n
)

has a form of a product of series

expansions (see also [12]). However it is well-known that the numerical inversion of such Laplace

transforms needs multi-precision computations of several values of L
(
F̄n
)

(t) (especially as the

αi are close to integers). This multi-precision is not necessary for our method which is therefore

easier to implement in order to compute approximated values if n is not too large (say 20).

Asymptotic bound for the error of the approximation of the truncated series

expansion

Let us define a truncated series expansion by

F̄n,K(s) =

ln∑
i=1

 ∏
j∈Θi,n

β
αj
j

 c(Θi,n)

K∑
k=0

h(Θi,n, k)w(Θc
i,n, k)s

−
(∑

j∈Θi,n
αj+k

)

+

 ∏
j∈Θn

β
αj
j

 c(Θn)s−(
∑n
j=1 αj).

The absolute error between F̄n(s) = P (X1 + . . .+Xn > s) and F̄n,K(s) may be bounded when

K is large in the following way.

Proposition 2.11. Let en,K(s) = |F̄n(s) − F̄n,K(s)|. We have, for s ≥ β1 + . . . + βn and for

large K,

en,K(s) ≤ (1 + o(1))

ln∑
i=1

 ∏
j∈Θi,n

β
αj
j

∣∣c(Θi,n)h(Θi,n,K + 1)w(Θc
i,n,K + 1)

∣∣ s−(
∑
j∈Θi,n

αj+K)

s− si,n
(2.2)

where si,n =
∑

j∈Θci,n
βj.

Comparisons between the approximations for identically distributed random

variables

We consider the sum of five independent and identically distributed Pareto random variables

with tail-index α equal to 0.3, 0.7, 1.3 and 1.7 and scale parameter β equal to one. We compare

our approximation F̄5,K(s) (K has been chosen equal to 10 for α = 0.3, 0.7 and K has been

chosen equal to 30 for α = 1.3, 1.7) with the approximation proposed by Albrecher, Hipp and

Kortschak ([2]), F̄AHK(s). ē5,K(s) denotes the upper bound of the error due to the truncation

and ∆(s) is the difference between both approximations.

We see that, for low levels of s, the approximation F̄AHK(s) may be poor, but the difference

between both approximations becomes rapidly small when s increases.
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Table 2.1: Comparisons of the approximations of the tail probabilities for the sum of 5 id
Pareto variables with tail index α equal to 0.3

s F̄5,K(s) ē5,K(s) F̄AHK(s) ∆(s)

102 0.81869414145 3.1 ×10−17 0.776658443075 4.2 ×10−2

103 0.51400403322 2.7 ×10−28 0.5090718141648 4.9 ×10−3

104 0.2858390017 1.4 ×10−36 0.285237847498 6.0 ×10−4

106 7.7345858 ×10−2 4 ×10−54 7.7336592 ×10−2 9.2 ×10−6

109 9.9460890 ×10−3 5.2 ×10−83 9.9460707 ×10−3 1.8 ×10−8

1012 1.2554639 ×10−3 6.6 ×10−111 1.2554639 ×10−3 3.6 ×10−11

Table 2.2: Comparisons of the approximations of the tail probabilities for the sum of 5 id
Pareto variables with tail index α equal to 0.7

s F̄5,K(s) ē5,K(s) F̄AHK(s) ∆(s)

50 0.37236442352 8.1 ×10−9 0.4239059060 -5.2 ×10−2

100 0.22258296637 1.9 ×10−11 0.2371520319 -1.5 ×10−2

500 6.7665654 ×10−2 1.2 ×10−17 6.8522166394 ×10−2 -8.5 ×10−4

103 4.0973532 ×10−2 5.1 ×10−25 4.1233138 ×10−2 -2.6 ×10−4

104 7.9797232 ×10−3 1.1 ×10−34 7.9848479 ×10−3 -5.1 ×10−6

106 3.1557231 ×10−4 4.0 ×10−54 3.1557437 ×10−4 -2.0 ×10−9

Table 2.3: Comparisons of the approximations of the tail probabilities for the sum of 5 id
Pareto variables with tail index α equal to 1.3

s F̄5,K(s) ē5,K(s) F̄AHK(s) ∆(s)

10 0.6694535572 8.1 ×10−15 0.6117374149 5.8 ×10−2

50 0.1031895699 2.6 ×10−29 0.0935046258 9.7 ×10−3

100 4.3920691 ×10−5 4.9 ×10−36 4.1762231 ×10−5 2.2 ×10−3

Table 2.4: Comparisons of the approximations of the tail probabilities for the sum of 5 id
Pareto variables with tail index α equal to 1.7

s F̄5,K(s) ē5,K(s) F̄AHK(s) ∆(s)

10 0.4524003842 6.2 ×10−14 0.3301369271 0.12
20 7.6124077 ×10−2 3.4 ×10−23 6.2276372 ×10−2 1.4 ×10−2

30 2.8414974 ×10−2 1.3 ×10−28 2.5462374 ×10−2 2.9 ×10−3

First example of computations of risk measures with our expansion formulas

We consider the sum of five independent Pareto random variables. The parameters are generated

randomly such that the tail indices are non-integers, and the scale parameters are positive (α1 =

0.563, β1 = 2.242), (α2 = 1.453, β2 = 1.456), (α3 = 3.324, β3 = 4.345), (α4 = 1.655, β4 = 1.234)

and (α5 = 4.245, β5 = 0.835).

In the following tables we compare the approximated values to those determined via simulations

as well as the time needed to get the values. K gives the number of terms in the series expansion

that are used for the approximations. All the computations have been done with the free software
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R on a computer with the following characteristics: Core(TM) 2 Duo, CPU T9300 @ 2.50GHz,

772MHz 1.00 GB of RAM.

Table 2.5: VaR of the sum of 5 variables calculated by simulation

Number of simulations 500000 1000000 5000000 10000000
(Time) (5s) (7s) (28s) (1m14s)

V aR0.1 13.80361 13.80991 13.81115 13.81149
V aR0.5 22.73633 22.71770 22.71211 22.71277
V aR0.95 480.0961 481.5711 476.1103 479.8297
V aR0.99 8120.633 8045.054 8013.650 8026.669
V aR0.995 28711.87 27027.48 27461.51 27616.38

Table 2.6: VaR of the sum of 5 variables calculated by our method

K 20 30 40 50

V aR0.1 13.80290 13.81327 13.81352 13.81340
(Time) (2s) (3s) (5s) (7s)

K 5 10 15 20

V aR0.5 22.81832 22.71466 22.71460 22.71485
(Time) (1s) (2s) (2s) (2s)

K 2 3 4 5
(Time) (≤ 1s) (≤ 1s) (≤ 1s) (≤ 1s)

V aR0.95 478.1181 478.4145 478.4219 478.4221
V aR0.99 8019.968 8019.987 8019.987 8019.987
V aR0.995 27419.94 27419.95 27419.95 27419.95

Table 5 provides the approximations determined via simulations and Table 6 the approximations

derived with our method. For the low and intermediate levels of probability κ (κ = 0.1, resp.

0.5), our method needs expansions with at least 30, resp. 10, terms to have accurate approxi-

mations (with errors less than 10−2). The computations are done in less than 3 seconds. The

Monte-Carlo method needs 106 simulations and 7 seconds to have acceptables approximations.

For the high levels of probability κ (κ ≥ 0.95), our method converges very quickly (only 2 or 3

terms are needed) and the time of calculation is less than 1 second, whereas the results obtained

by simulations are unstable even if 107 simulations are performed.

We now add five more independent Pareto variables with parameters (α6 = 0.563, β6 = 2.242),

(α7 = 1.453, β7 = 1.456), (α8 = 3.324, β8 = 4.345), (α9 = 3.121, β9 = 1.234) and (α10 =

4.245, β10 = 0.835).

Table 7 provides the approximations determined via simulations and Table 8 the approximations

derived with our method. Having five random variables or ten in the sum neither modifies a lot

the accuracy of the approximations nor the time of calculation for the Monte-Carlo method. Of

course our method needs more time than the previous since there are more terms to calculate,

but for the same accuracy it provides approximations at least three times faster.
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Table 2.7: VaR of the sum of 10 variables calculated by simulation

Number of simulations 500000 1000000 5000000 10000000
(Time) (6s) (11s) (53s) (1m48s)

V aR0.1 46.56980 46.55908 46.56425 46.56102
V aR0.5 67.14518 67.09037 67.15230 67.15699
V aR0.95 556.2743 554.6995 557.4301 560.2321
V aR0.99 8176.780 8011.923 8021.472 8249.039
V aR0.995 28520.88 26519.30 27235.69 28047.29

Table 2.8: VaR of the sum of 10 variables calculated by our method

K 20 25 30 35

V aR0.1 46.56262 46.55977 46.56125 46.56171
(Time) (52s) (1m6s) (1m24s) (1m46s)

K 14 16 18 20

V aR0.5 67.14200 67.14465 67.14526 67.14520
(Time) (41s) (45s) (49s) (52s)

K 2 4 6 8

V aR0.95 552.3559 559.7354 559.8288 559.8295
(Time) (31s) (33s) (34s) (35s)

K 2 3 4 5
(Time) (31s) (32s) (33s) (34s)

V aR0.99 8139.306 8139.839 8139.844 8139.844
V aR0.995 27569.51 27569.67 27569.67 27569.67

Second example of computations of risk measures with our expansion formulas

We consider the sum of five independent Hall-Pareto random variables Hi, i = 1, 2, 3, 4, 5, whose

probability survival functions are given by

P (H1 > x) =
(
0.717x−1.364 + 1.470x−2.164 + 0.512x−2.434 + 1.944x−3.346

)
P (H2 > x) =

(
2.732x−1.734 + 1.951x−2.759 + 0.029x−3.677

)
P (H3 > x) =

(
4.318x−2.182 + 3.143x−2.555 − 1.039x−2.900 + 0.534x−3.124 + 4.343x−4.011

)
P (H4 > x) =

(
1.227x−2.346 + 6.431x−2.789 + 1.788x−3.973

)
P (H5 > x) =

(
5.242x−1.904 + 0.435x−2.614

)
where (r1 = 1.900, r2 = 2.109, r3 = 2.454, r4 = 2.188, r5 = 2.442). The parameters have been

generated randomly such that the expectation of each random variable exists.

By the method of simulation, it takes about 150 seconds to have a sample of size 105 for

each random variable. Hence, to obtain a sample of size 105 for the sum, it takes about 750

seconds. Following the above example, the size 105 is however not enough to have accurate
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approximations of Value at Risks with high levels of probability, and therefore a bigger sample

is needed. But the time of calculation could then be quite long: for example, it takes more than

2 hours to have a sample of size 106.

Table 2.9: VaR and TVaR of the sum of 5 Hall variables

Level 10% 50% 95% 99% 99.5%

VaR 14.02788 18.15875 37.58615 70.44447 97.13317
TVaR 22.6820 27.99025 69.80856 158.8083 236.2707

By our method, following Proposition 2.5, to obtain the distribution of (H1+H2+H3+H4+H5),

we have to calculate 4×3×5×3×2 = 360 times the distribution of sum of 5 independent Pareto

variables, which takes 1934 seconds (32.5 minutes) for the low levels of probability (K = 50).

For the high levels, the time of calculation is about 5 minutes. We also derive approximations

for the Tail Value at Risks of the sum, whereas the method of simulation can not give any

acceptable result for the Tail Values at Risk in general.

Approximations of the tail probabilities for the sums of Pareto random vari-

ables with integer tail-indices

We finally discuss how the probability survival functions of the sums of Pareto random variables

with integer tail-indices can be approximated by series expansions with respective almost-integer

indices.

First recall that, if X1, . . . , Xn and Y1, . . . , Yn are independent positive random variables such

that P (Xi ≤ x) ≤ P (Yi ≤ x) for i = 1, . . . , n and for any x ≥ 0, then P (X1 + . . .+Xn ≤ x) ≤
P (Y1 + . . .+ Yn ≤ x) for any x ≥ 0.

Let Ξ ⊂ Θn and assume that, for j ∈ Ξ, αj ∈ N∗. Let ε > 0 and define, for all i ∈ Ξ, Y +
i (resp.

Y −i ) as a random variable with the same distribution as Xi(αi+ ε, βi) (resp. Xi(αi− ε, βi)) and

independent of the other random variables. We then derive the following bounds

P

(∑
i∈Ξ

Y +
i +

∑
i∈Ξc

Xi > s

)
≤ P

(
n∑
i=1

Xi > s

)
≤ P

(∑
i∈Ξ

Y −i +
∑
i∈Ξc

Xi > s

)
. (2.3)

Note that, if ε is very small, multi-precision may be required in practice to compute the constants

c(Θi,n) and w(Θi,n, k).

In this last example, we consider the sum of ten standard Pareto random variables with unit

tail indices. We approximate the values of the survival probabilities by using Equation (2.3)

with ε = 10−10 and give the values of the bounds of the errors given by Equation (2.2) for these

approximations and for several values of K (see Table 6).
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Table 2.10: Numerical lower and upper bounds for F̄ (s)

s = 11 F̄+
K ( Lower bound ) F̄−K ( Upper bound )

K = 130 0.999973048452137 1.000094202688167
error 0.000053902537869 0.008771801784979

K = 140 0.999999956830654 0.999999962600813
error 0.000000005922260 0.000001131249689

K = 150 0.999999948351894 0.999999948353228
error 0.000000000003187 0.000000032479338

K = 160 0.999999948348678 0.999999948348680
error 5.92 ∗ 10−16 0.000000000000014

K = 200 0.999999948348677 0.999999948348677
error 4.05 ∗ 10−27 1.3 ∗ 10−24

s = 50 F̄+
K ( Lower bound ) F̄−K ( Upper bound )

K = 50 -57864569 76040232
error 1077334999 3325809546

K = 60 0.381768396092029 0.381771899873744
error 0.000038914282494 0.000072936507305

K = 70 0.381770141115882 0.381770141333152
error 8.09 ∗ 10−19 1.85 ∗ 10−18

K = 80 0.381770141115882 0.381770141333152
error 5.94 ∗ 10−32 2.01 ∗ 10−31

s = 1000 F̄+
K ( Lower bound ) F̄−K ( Upper bound )

K = 30 0.110878105067172 0.110883997759744
error 77.1462491867784 78.7702652831532

K = 40 0.010649942642845 0.010649942657699
error 7.32 ∗ 10−28 7.57 ∗ 10−28

K = 50 0.010649942642845 0.010649942657699
error 1.33 ∗ 10−56 2.20 ∗ 10−56

For the small value of s (s = 11), the error converges slowly to zero as K increases: K must

be chosen at least equal to 160 to have good approximations of the upper bound and the lower

bounds. The probability F̄10(11) is calculated with an error smaller than 10−15 when K = 200.

For larger values of s, the upper bounds and the lower bounds of F̄10(s) (s = 50 and s = 1000)

may be calculated by using smaller values of K because the errors decrease very fast as s

increases.

2.6 Intermediary proofs

Proof of Proposition 2.2

For α1, α2 ∈ R+\N, let

δ(s, α1, α2) = sα1+α2η0,∞(s, α2, α1). (2.4)
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We first want to prove that ς((β1 +β2), (α1, β1), (α2, β2)) does not depend on (β1, β2). We have

ς((β1 + β2), (α1, β1), (α2, β2)) =
(β1 + β2)α1+α2

βα1
1 βα2

2

− δ
(
β1 + β2

β2
, α1, α2

)
− δ

(
β1 + β2

β1
, α2, α1

)
.

Let

A(z) = zα1+α2(z − 1)−α2 − δ(z, α1, α2)− δ
(

z

z − 1
, α2, α2

)
such that

ς((β1 + β2), (α1, β1), (α2, β2)) = A

(
β1 + β2

β2

)
.

Since

∂

∂z
δ(z, α1, α2) = α1z

α1−1

(
1 +

α2

1!
z−1 +

α2(α2 + 1)

2!
z−2 + . . .

)
= α1z

α1−1(1− z−1)−α2 = α1z
α1+α2−1(z − 1)−α2 ,

we have

A′(z) = (α1 + α2)zα1+α2−1(z − 1)−α2 − α2(z − 1)−(α2+1)zα1+α2 − α1z
α1+α2−1(z − 1)−α2

+α2z
α1+α2−1(z − 1)−(α2+1)

= 0

for every z > 1. It means that A(z) is constant for every z > 1. Hence we have

A

(
β1 + β2

β2

)
= A(2) = 2α1+α2 − δ(2, α1, α2)− δ(2, α1, α2).

and the result follows.

Note that for α1, α2 ∈ R+\N

δ(2, α1, α2) = 2α1 + 2(α1−1)α2
α1

α1 − 1
+ 2(α1−2)α2(α2 + 1)

2!

α1

α1 − 2
+ . . .

= 2α1+α2 +
α2

α1 − 1
δ(2, α1 − 1, α2 + 1),

and then

δ(2, α1, α2 + 1) = 2α1 + 2(α1−1)(α2 + 1)
α1

α1 − 1
+ 2(α1−2) (α2 + 1)(α2 + 2)

2!

α1

α1 − 2
+ . . .

= δ(2, α1, α2) +
α1

α1 − 1
δ(2, α1 − 1, α2 + 1)

=
α1 + α2

α2
δ(2, α1, α2)− α1

α2
2α1+α2 . (2.5)
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We now want to prove that

c2(α1, α2) =
Γ(1− α1)Γ(1− α2)

Γ(1− α1 − α2)
= (α1 + α2 − 1)B (1− α1, 1− α2)

= 2α1+α2 − δ(2, α1, α2)− δ(2, α2, α1).

Let us begin with the case 0 < α1 < 1 and 0 < α2 < 1. We have

B (1− α1, 1− α2) =

∫ 1

0
x−α1(1− x)−α2dx =

∫ 1/2

0
x−α1(1− x)−α2dx+

∫ 1/2

0
x−α2(1− x)−α1dx

=

1/2∫
0

x−α1

∞∑
k=0

h(α2, k)xkdx+

1/2∫
0

x−α2

∞∑
k=0

h(α1, k)xkdx

= −

( ∞∑
k=0

h(α2, k)
2α1−1−k

α1 − 1− k
+
∞∑
k=0

h(α1, k)
2α2−1−k

α2 − 1− k

)

= −
(
δ(2, α1 − 1, α2)

α1 − 1
+
δ(2, α2 − 1, α1)

α2 − 1

)
.

Therefore, we have

c2(α1, α2) = (α1 + α2 − 1)B (1− α1, 1− α2)

= − (α1 + α2 − 1)

(
δ(2, α1 − 1, α2)

α1 − 1
+
δ(2, α2 − 1, α1)

α2 − 1

)
= − (α1 + α2 − 1)

(
δ(2, α1, α2)− 2α1+α2−1

α1 + α2 − 1
+
δ(2, α2, α1)− 2α1+α2−1

α1 + α2 − 1

)
= 2α1+α2 − δ(2, α1, α2)− δ(2, α2, α1).

For α1, α2 ∈ R+\N, let us now define

d(α1, α2) = 2α1+α2 − δ(2, α1, α2)− δ(2, α2, α1) = ς(2, (α1, 1), (α2, 1))

We deduce by (2.5) that

d(α1 + 1, α2) = 2α1+α2+1 − δ(2, α1 + 1, α2)− δ(2, α2, α1 + 1)

= −α2

α1
δ(2, α1, α2 + 1)− δ(2, α2, α1 + 1)

= −α2

α1

(
α1 + α2

α2
δ(2, α1, α2)− α1

α2
2α1+α2

)
− α1 + α2

α1

(
δ(2, α2, α1) +

α2

α1
2α1+α2

)
=

α1 + α2

α1

(
2α1+α2 − δ(2, α1, α2)− δ(2, α2, α1)

)
=

α1 + α2

α1
d(α1, α2).
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Since this property is also shared by

c2(α1, α2) =
Γ(1− α1)Γ(1− α2)

Γ(1− α1 − α2)
,

we conclude that c2(α1, α2) = d(α1, α2) for α1, α2 ∈ R+\N.

Proof of Proposition 2.3

We have, for s ≥ 2,

P (X1 +X2 > s) = P (X1 > s− 1) + P (X1 < s− 1, X1 +X2 > s)

= P (X1 > s− 1) +

∫ s−1

1
α1x

−(α1+1)(s− x)−α2dx

= P (X1 > s− 1) + α1s
−(α1+α2)

∫ 1−s−1

s−1

u−(α1+1)(1− u)−α2du. (2.6)

Let

g(s) =

∫ 1−s−1

s−1

u−(α1+1)(1− u)−α2du, s ≥ 2.

Such an integral does not have an explicit expression in general, but it can be written as a series

expansion of power of s−1. The function g is differentiable for every s > 2 and

g′(s) =
1

s2

(
(1− 1/s)−(α1+1) (1/s)−α2

)
+

1

s2

(
(1/s)−(α1+1)(1− 1/s)−α2

)
= sα1+α2−1

(
(s− 1)−(α1+1) + (s− 1)−α2

)
.

Since (s− 1)−θ can be developed as a series expansion of s−1 for θ > 0 in the following way

(s− 1)−θ =

∞∑
k=0

1

kB(θ, k)
s−(θ+k), s > 1,

we deduce that

g′(s) = s(α1+α2−1)

( ∞∑
k=0

1

kB(α1 + 1, k)
s−(α1+1+k) +

∞∑
k=0

1

kB(α2, k)
s−(α2+k)

)

=

(
s(α1−1) + α2s

(α1−2) +
α2(α2 + 1)

2!
s(α1−3) + . . .

)
+

+

(
s(α2−2) + (α1 + 1)s(α2−3) +

(α1 + 1)(α1 + 2)

2!
s(α2−4) + . . .

)
.
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With the assumption that α1 and α2 are not integers, we derive that

g(s) =

(
sα1

α1
+ α2

sα1−1

α1 − 1
+
α2(α2 + 1)

2!

sα1−2

α1 − 2
+ . . .

)
+

(
sα2−1

α2 − 1
+ (α1 + 1)

sα2−2

α2 − 2
+

(α1 + 1)(α1 + 2)

2!

sα2−3

α2 − 3
+ . . .

)
+ γ0

where γ0 is a constant which only depends on α1 and α2 and is determined by the condition

that g(2) = 0.

Replacing g in Equation (2.6), we have

P (X1 +X2 > s) = (s− 1)−α1 + α1s
−(α1+α2)g(s)

=

(
s−α1 +

α2

α2 − 1

α1

1!
s−(α1+1) +

α2

α2 − 2

α1(α1 + 1)

2!
s−(α1+2) + . . .

)
+

(
s−α2 +

α1

α1 − 1

α2

1!
s−(α2+1) α1

α1 − 2

α2(α2 + 1)

2!
s−(α2+2) + . . .

)
+c2(α1, α2)s−(α1+α2)

= η0,∞(s, α1, α2) + η0,∞(s, α2, α1) + c2(α1, α2)s−(α1+α2)

where c2(α1, α2) = α1γ0 does not depend on s and is such that

η0,∞(2, α1, α2) + η0,∞(2, α2, α1) + c2(α1, α2)2−(α1+α2) = 1,

since P (X1 +X2 > 2) = 1.

Proof of Proposition 2.4

We can write that

P (X1 +X2 > s) = P (X1 > s− β2) + P (X1 < s− β2, X1 +X2 > s)

= βα1
1 (s− β2)−α1 +

∫ s−β2

β1

α1β
α1
1 x−(α1+1)βα2

2 (s− x)−α2dx (2.7)

= P (X1 > s− β2) + βα1
1 βα2

2 α1s
−(α1+α2)

∫ s−β2

β1

u−(α1+1)(1− u)−α2du.
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Similarly to the proof of Proposition 2.3, we derive the series expansion of the probability

survival function

P (X1 +X2 > s) = βα1
1

(
s−α1 + α1

α2

α2 − 1
β2s
−(α1+1) + . . .

)
+

+βα2
2

(
s−α2 + α2

α1

α1 − 1
β1s
−(α2+1) + . . .

)
+

+βα1
1 βα2

2 γ1s
−(α1+α2)

= βα1
1 βα2

2 s−(α1+α2)

(
δ

(
s

β2
, α2, α1

)
+ δ

(
s

β1
, α1, α2

)
+ γ1

)
where γ1 is a constant which does not depend on s, and δ is the function defined in Equation

(2.4). Since P (X1 +X2 > β1 + β2) = 1, we have

γ1 =
(β1 + β2)(α1+α2)

βα1
1 βα2

2

− δ
(
β1 + β2

β2
, α2, α1

)
− δ

(
β1 + β2

β2
, α1, α2

)
.

By Proposition 2.2, we deduce that γ1 = c2(α1, α2).

Proof of Proposition 2.5

The survival probability distribution function of the sum of H1 and H2 may be written as

P (H1 +H2 > s) = P (H1 > s− r2) + P (H1 < (s− r2), H1 +H2 > s)

=
∞∑
i=1

γ1,i(s− r2)−α1,i +

∫ s−r2

r1

∞∑
i=1

γ1,iα1,ix
−(α1,i+1)

∞∑
i=1

γ2,i(s− x)−α2,idx

=
∞∑
i=1

γ1,i(s− r2)−α1,i +
∞∑
i=1

∞∑
j=1

γ1,iγ2,j

∫ s−r2

r1

α1,ix
−(α1,i+1)(s− x)−α2,idx.

Since
∑∞

j=1 γ2,jr
−α2,j

2 = 1, we have by Equation (2.7)

P (H1 +H2 > s) =
∞∑
i=1

γ1,i(s− r2)−α1,i

∞∑
j=1

γ2,j

r
α2,j

2

+

∞∑
i,j=1

γ1,iγ2,j

s−r2∫
r1

α1,ix
−(α1,i+1)(s− x)−α2,idx

=

∞∑
i,j=1

γ1,i

r
α1,i

1

γ2,j

r
α2,j

2

rα1,i

1 (s− r2)−α1,i + r
α1,i

1 r
α2,j

2

s−r2∫
r1

α1,ix
−(α1,i+1)(s− x)−α2,idx


=

∞∑
i=1

∞∑
j=1

γ1,i

r
α1,i

1

γ2,j

r
α2,j

2

P (Xi + Yj > s) .
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Proof of Proposition 2.6

From Proposition 2.4, we have

P (X1 +X2 > s) =

∞∑
j=0

λ1,j (β1 + β2)α1+j s−(α1+j) +

∞∑
j=0

λ2,j (β1 + β2)α2+j s−(α2+j)

+λ3 (β1 + β2)α1+α2 s−(α1+α2)

where

λ1,j =
βα1

1 h(α1, j)w1((α2, β2), j)

(β1 + β2)α1+j
, j ≥ 1,

λ2,j =
βα2

2 h(α2, j)w1((α1, β1), j)

(β1 + β2)α2+j
, j ≥ 1,

λ3 =
βα1

1 βα2
2 c2(α1, α2)

(β1 + β2)α1+α2
.

Let Y1,j(α1 +j, β1 +β2), Y2,j(α1 +j, β1 +β2), Y3(α1 +α2, β1 +β2) be independent Pareto random

variables, independent of X3. We have

P (X1 +X2 > s) =

∞∑
j=0

λ1,jP (Y1,j > s) +

∞∑
j=0

λ2,jP (Y2,j > s) + λ3P (Y3 > s) .

Using again Proposition 2.4, we deduce that

P (Y1,j +X3 > s) = (β1 + β2)α1+j
∞∑
k=0

h(α1 + j, k)w1((α3, β3), k)s−(α1+j+k)

+βα3
3

∞∑
k=0

h(α3, k)w1((α1 + j, β1 + β2), k)s−(α3+k)

+ (β1 + β2)α1+j βα3
3 c2(α1 + j, α3)s−(α1+j+α3)

and

P (Y2,j +X3 > s) = (β1 + β2)α2+j
∞∑
k=0

h(α2 + j, k)w1((α3, β3), k)s−(α2+j+k)

+βα3
3

∞∑
k=0

h(α3, k)w1((α2 + j, β1 + β2), k)s−(α3+k)

+ (β1 + β2)α2+j βα3
3 c2(α2 + j, α3)s−(α2+j+α3)
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and

P (Y3 +X3 > s) = (β1 + β2)α1+α2

∞∑
k=0

h(α1 + α2, k)w1((α3, β3), k)s−(α1+α2+k)

+βα3
3

∞∑
k=0

h(α3, k)w1((α1 + α2, β1 + β2), k)s−(α3+k)

+ (β1 + β2)α1+α2 βα3
3 c2(α1 + α2, α3)s−(α1+α2+α3).

By Proposition 2.5, we have that

P (X1 +X2 +X3 > s)

=
∞∑
j=0

∞∑
k=0

λ1,j (β1 + β2)α1+j h(α1 + j, k)w1((α3, β3), k)s−(α1+j+k)

+
∞∑
j=0

∞∑
k=0

λ2,j (β1 + β2)α2+j h(α2 + j, k)w1((α3, β3), k)s−(α2+j+k)

+βα3
3

∞∑
k=0

h(α3, k)
(
λ3w1((α1 + α2, β1 + β2), k)

+

∞∑
j=0

λ1,jw1((α1 + j, β1 + β2), k) +

∞∑
j=0

λ2,jw1((α2 + j, β1 + β2), k)
)
s−(α3+k)

+λ3 (β1 + β2)α1+α2

∞∑
k=0

h(α1 + α2, k)w1((α3, β3), k)s−(α1+α2+k)

+

∞∑
j=0

λ1,j (β1 + β2)α1+j βα3
3 c2(α1 + j, α3)s−(α1+α3+j)

+
∞∑
j=0

λ2,j (β1 + β2)α2+j βα3
3 c2(α2 + j, α3)s−(α2+α3+j)

+λ3 (β1 + β2)α1+α2 βα3
3 c2(α1 + α2, α3)s−(α1+α2+α3).

Then note that

∞∑
j=0

∞∑
k=0

λ1,j (β1 + β2)α1+j c1(α1 + j)h(α1 + j, k)w1((α3, β3), k)s−(α1+j+k)

=
∞∑
l=0

 l∑
j=0

λ1,j (β1 + β2)α1+j c1(α1 + j)h(α1 + j, l − j)w1((α3, β3), l − j)

 s−(α1+l)
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and that

l∑
j=0

λ1,j (β1 + β2)α1+j c(α1 + j)h(α1 + j, l − j)w1((α3, β3), l − j)

=
l∑

j=0

c(α1)h(α1, j)w1((α2, β2), j)

(β1 + β2)α1+j
(β1 + β2)α1+j (α1 + j)(α1 + j + 1) . . . (α1 + l − 1)

(l − j)!
α3β

l−j
3

α3 − l + j

= βα1
1

l∑
j=0

α1(α1 + 1) . . . (α1 + j − 1)

j!

α2β
j
2

α2 − j
(α1 + j)(α1 + j + 1) . . . (α1 + l − 1)

(l − j)!
α3β

l−j
3

α3 − l + j

= βα1
1 h(α1, l)

l∑
j=0

l!

j!(l − j)!
α2β

j
2

α2 − j
α3β

l−j
3

α3 − l + j
.

Moreover

λ3 (β1 + β2)α1+α2 βα3
3 c2(α1 + α2, α3)

=
βα1

1 βα2
2 c(α1, α2)

(β1 + β2)α1+α2
(β1 + β2)α1+α2 βα3

3 c2(α1 + α2, α3)

= βα1
1 βα2

2 βα3
3 c2(α1, α2)c2(α1 + α2, α3)

and

λ3 (β1 + β2)α1+α2 c1(α1 + α2) =
βα1

1 βα2
2 c(α1, α2)

(β1 + β2)α1+α2
(β1 + β2)α1+α2 c1(α1 + α2)

= βα1
1 βα2

2 c2(α1, α2)c(α1 + α2)

= βα1
1 βα2

2 c2(α1, α2).
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By symmetry with respect to (α1, β1), (α2, β2) and (α3, β3), we deduce that

P (X1 +X2 +X3 > s) =
∞∑
l=0

βα1
1 h(α1, l)

 l∑
j=0

l!

j!(l − j)!
α2β

j
2

α2 − j
α3β

l−j
3

α3 − l + j

 s−(α1+l)

+

∞∑
l=0

βα2
2 h(α2, l)

 l∑
j=0

l!

j!(l − j)!
α1β

j
1

α1 − j
α3β

l−j
3

α3 − l + j

 s−(α2+l)

+

∞∑
l=0

βα3
3 h(α3, l)

 l∑
j=0

l!

j!(l − j)!
α1β

j
1

α1 − j
α2β

l−j
2

α2 − l + j

 s−(α3+l)

+βα1
1 βα2

2 c2(α1, α2)
∞∑
k=0

h(α1 + α2, k)w1((α3, β3), k)s−(α1+α2+k)

+βα1
1 βα3

3 c2(α1, α3)

∞∑
k=0

h(α1 + α3, k)w1((α2, β2), k)s−(α1+α3+k)

+βα2
2 βα3

3 c2(α2, α3)

∞∑
k=0

h(α2 + α3, k)w1((α1, β1), k)s−(α2+α3+k)

+βα1
1 βα2

2 βα3
3 c2(α1, α2)c2(α1 + α2, α3)s−(α1+α2+α3).

It suffices to note that c3(α1, α2, α3) = c2(α1, α2)c2(α1 + α2, α3) and

w2((α2, β2), (α3, β3), l) =
l∑

j=0

l!

j!(l − j)!
α2β

j
2

α2 − j
α3β

l−j
3

α3 − l + j
,

to have

P (X1 +X2 +X3 > s) = βα1
1

∞∑
k=0

h(α1, k)w2((α2, β2), (α3, β3), k)s−(α1+k)

+βα2
2

∞∑
k=0

h(α2, k)w2((α1, β1), (α3, β3), k)s−(α2+k)

+βα3
3

∞∑
k=0

h(α3, k)w2((α1, β1), (α2, β2), k)s−(α3+k)

+βα1
1 βα2

2 c2(α1, α2)

∞∑
k=0

h(α1 + α2, k)w1((α3, β3), k)s−(α1+α2+k)

+βα1
1 βα3

3 c2(α1, α3)

∞∑
k=0

h(α1 + α3, k)w1((α2, β2), k)s−(α1+α3+k)

+βα2
2 βα3

3 c2(α2, α3)

∞∑
k=0

h(α2 + α3, k)w1((α1, β1), k)s−(α2+α3+k)

+βα1
1 βα2

2 βα3
3 c3(α1, α2, α3)s−(α1+α2+α3).
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Proof of Proposition 2.7

Let X1(α1, 1), X2(α2, 1) be two independent Pareto random variables such that

α1 ∈ (m1 − 1,m1 + 1) \{m1}, α2 ∈ (m2 − 1,m2 + 1) \{m2}. By Proposition 2.3, we have, for

s ≥ 2,

P (X1 +X2 > s)

=

m2−1∑
k=0

α2

(α2 − k)

1

kB(α1, k)
s−(α1+k) +

m1−1∑
k=0

α1

(α1 − k)

1

kB(α2, k)
s−(α2+k)

+
α2

(α2 −m2)

1

m2B(α1,m2)

(
s−(α1+m2) − 2−(α1+m2)

(s
2

)−(α1+α2)
)

+
α1

(α1 − k)

1

kB(α2, k)

(
s−(α2+k) − 2−(α2+k)

(s
2

)−(α1+α2)
)

+

∞∑
k=m2+1

α2

(α2 − k)

1

kB(α1, k)
s−(α1+k) +

∞∑
k=m1+1

α1

(α1 − k)

1

kB(α2, k)
s−(α2+k)

+

1−
k 6=m2∑
k≥0

α2

(α2 − k)

1

kB(α1, k)
2−(α1+k) −

k 6=m1∑
k≥0

α1

(α1 − k)

1

kB(α2, k)
2−(α2+k)

(s
2

)−(α1+α2)
.

We let α1 tend to m1 and α2 tend to m2. We first have

m2−1∑
k=0

α2

(α2 − k)

1

kB(α1, k)
s−(α1+k) →

m2−1∑
k=0

m2

(m2 − k)

1

kB(m1, k)
s−(m1+k) = η0,m2−1(s,m1,m2)

and

α2

(α2 −m2)

1

m2B(α1,m2)

(
s−(α1+m2) − 2−(α1+m2)

(s
2

)−(α1+α2)
)
→ 1

B(m1,m2)
s−(m1+m2) ln

(s
2

)
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Then

∞∑
k=m2+1

α2

(α2 − k)

1

kB(α1, k)
s−(α1+k)

→
∞∑

k=m2+1

m2

(m2 − k)

1

kB(m1, k)
s−(m1+k)

= − m2

(m1 − 1)!
s−(m1+m2)

∞∑
k=m2+1

1

(k −m2)

(m1 + k − 1)!

k!
s−(k−m2)

= − m2

(m1 − 1)!
s−(m1+m2)

∞∑
k=m2+1

1

(k −m2)
(k + 1)...(m1 + k − 1)s−(k−m2)

= − m2

(m1 − 1)!
s−(m1+m2)

∞∑
k=m2+1

1

(k −m2)
((k −m2) +m2 + 1)...(k +m1 − 1)s−(k−m2)

= − m2

(m1 − 1)!
s−(m1+m2)

m1−1∑
j=0

ϕj,m1−1,m2

∞∑
k=1

kj−1s−k.

The result follows.

Proof of Proposition 2.8

Let

f(s,m1,m2) =

∫ 1−1/s

1/s
u−m1(1− u)−m2du, s ≥ 2.

Since 1 = u+ (1− u), we have

f(s,m1,m2) = f(s,m1 − 1,m2) + f(s,m1,m2 − 1).

Note that

f(s,m1,m2 − 1)

=

∫ 1−1/s

1/s
u−m1(1− u)−(m2−1)du

=

[
u−(m1−1)

−(m1 − 1)
(1− u)−(m2−1)

]1−1/s

1/s

+
m2 − 1

m1 − 1

∫ 1−1/s

1/s
u−(m1−1)(1− u)−m2du

=
1

m1 − 1
s(m1+m2−2)

[
(s− 1)−(m2−1) − (s− 1)−(m1−1)

]
+
m2 − 1

m1 − 1
f(s,m1 − 1,m2)

and thus

f(s,m1,m2) =
1

m1 − 1
s(m1+m2−2)

[
(s− 1)−(m2−1) − (s− 1)−(m1−1)

]
+
m1 +m2 − 2

m1 − 1
f(s,m1−1,m2).
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On the one hand, we have from Equation (2.6)

P (X1 +X2 > s) = (s− 1)−m1 +m1s
−(m1+m2)f(s,m1 + 1,m2)

and therefore

P (X1 +X2 > s) =
1

s(s− 1)m1−1
+

1

s(s− 1)m2−1
+
m1 +m2 − 1

sm1+m2
f(s,m1,m2).

On the other hand, f(s,m1,m2) can be calculated recursively as follows: f(s,m1,m2) is written

as a function of f(s,m1 − 1,m2), and f(s,m1 − 1,m2) as a function of f(s,m1 − 1,m2 − 1):

f(s,m1,m2) =
m1 +m2 − 2

(m1 − 1)(m2 − 1)
sm1+m2−2

×
[

1

(s− 1)m1−1

(
m1 − 1

m1 +m2 − 2
− 1

s

)
+

1

(s− 1)m2−1

(
m2 − 1

m1 +m2 − 2
− 1

s

)]
+

(m1 +m2 − 2)(m1 +m2 − 3)

(m1 − 1)(m2 − 1)
f(s,m1 − 1,m2 − 1).

If m1 ≥ m2, we finally derive that

P (X1 +X2 > s) =
1

s(s− 1)m1−1
+

1

s(s− 1)m2−1

+

m2−1∑
i=1

(m1 +m2 − 1)(m1 +m2 − 2) . . . (m1 +m2 − 2i)

(m1 − 1)(m1 − 2) . . . (m1 − i)(m2 − 1)(m2 − 2) . . . (m2 − i)
s−2i

×
[

1

(s− 1)m1−i

(
m1 − i

m1 +m2 − 2i
− 1

s

)
+

1

(s− 1)m2−i

(
m2 − i

m1 +m2 − 2i
− 1

s

)]
+

(m1 +m2 − 1)(m1 +m2 − 2) . . . (m1 −m2 + 1)

(m1 − 1)(m1 − 2) . . . (m1 −m2 + 1)(m2 − 1)!
s−(m1+m2)f(s,m1 −m2 + 1, 1)

where it is easely seen that, for j ∈ N,

f(s, j + 1, 1) =

j∑
k=1

sk

k

(
1− 1

(s− 1)k

)
+ 2 log (s− 1) .

Proof of Proposition 2.9

The proof follows the same lines as those of proofs of Proposition 2.7 and Proposition 2.8. In

order to shorten the paper, the proof is not given here but it is, however, available upon request.

Proof of Proposition 2.11

For the proof of Proposition 2.11, we shall use the following proposition.
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Proposition 2.12. Let (ak)k≥0 and (bk)k≥0 two sequences of real numbers satisfying (i) limk→∞ |ak|
=∞ and limk→∞ |bk| =∞, (ii) limk→∞ ak/ak−1 = α and limk→∞ bk/bk−1 = β where α > 0, β >

0 and α+ β > 1. If Sk =
∑k

i=0C
i
kaibk−i, then limk→∞ Sk/Sk−1 = (α+ β).

Proof: Since α > 0 and β > 0, (ak)k≥0 and (bk)k≥0 do not change sign for large k. We can assume

that both sequences are positive from k0 > 0 without loss of generality. Following Cauchy’s

criterion, the convergences limk→∞ ak/ak−1 = α and limk→∞ bk/bk−1 = β are equivalent to

limk→∞(ak)
1/k = α and limk→∞(bk)

1/k = β. Hence, for some positive ε < (α+ β − 1)/2, there

exits k1 > k0 such that, for k ≥ k1, we have: (α−ε)k < ak < (α+ε)k and (β−ε)k < bk < (β+ε)k.

For k > 2k1 we can write

Sk =

k1−1∑
i=0

Cikaibk−i +
k∑

i=k−k1+1

Cikaibk−i +

k−k1∑
i=k1

Cikaibk−i

=

k1−1∑
i=0

Cikaibk−i +

k1−1∑
i=0

Cikbiak−i +

k−k1∑
i=k1

Cikaibk−i

≥
k1−1∑
i=0

Cik
[
(ai − (α− ε)i)bk−i + (bi − (β − ε)i)ak−i

]
+

k∑
i=0

Cik(α− ε)i(β − ε)k−i

=

k1−1∑
i=0

Cik
[
(ai − (α− ε)i)bk−i + (bi − (β − ε)i)ak−i

]
+ (α+ β − 2ε)k

Let M = maxj=0,...,k1{|aj − (α− ε)j |, |bj − (β − ε)j |}. We have

Sk ≥ (α+ β − 2ε)k −Mkk1

k1−1∑
i=0

[
(α+ ε)k−i + (β + ε)k−i

]
.

On the other hand, since (α+ β − 2ε) > 1, we have

lim
k→∞

1

(α+ β − 2ε)k

(
kk1

k1−1∑
i=0

[
(α+ ε)k−i + (β + ε)k−i

])
= 0.

Therefore for any positive γ < 1, we have, for large k, Sk ≥ (1− γ)(α+ β − 2ε)k.

Similarly, we can derive, for large k, that Sk ≤ (1+γ)(α+β+2ε)k. Since ε and γ have arbitrary

positive values, we deduce that limk→∞ S
1/k
k = (α+β). By Cauchy’s criterion, this is equivalent

to

lim
k→∞

Sk
Sk−1

= (α+ β),

which ends the proof.

We can assume without loss of generality that, for i = 1, . . . , n, βi ≥ 1. Otherwise, if there

exists some βi ≤ 1, we consider the probability survival function at s/mini=1,...,n{βi} instead of
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s, which is equivalent to divide all the constants βi by mini=1,...,n{βi}.

We now prove by induction that

lim
k→∞

w(Θi,n, k)

w(Θi,n, k − 1)
=
∑
i∈Θi,n

βi. (2.8)

If |Θi,n| = 1, e.g. Θi,n = {j}, then we have

lim
k→∞

w(Θi,n, k)

w(Θi,n, k − 1)
= lim

k→∞

αj − (k − 1)

αj − k
βkj

βk−1
j

= βj .

Assuming that the convergence (2.8) is true with |Θi,n| = j. Let, for ij+1 ∈ Θn\Θi,n, Θ
(j+1)
i,n =

Θi,n ∪ {ij+1}. From the recursive algorithm for calculating the function w, we derive that

w(Θ
(j+1)
i,n , k) =

k∑
l=0

C lk
αij+1β

l
ij+1

αij+1 − l
w(Θi,n, k − l).

By using the previous proposition with

ak =
αij+1β

k
ij+1

αij+1 − k
, α = βij+1 , bk = w(Θi,n, k), β =

∑
j∈Θi,n

βj ,

we can deduce that

lim
k→∞

w(Θ
(j+1)
i,n , k)

w(Θ
(j+1)
i,n , k − 1)

=
∑
l∈Θi,n

βl + βj+1 =
∑

l∈Θ
(j+1)
i,n

βl.

Then, since

lim
k→∞

h(Θi,n, k)

h(Θi,n, k − 1)
= 1,

we derive that the coefficients of the power series expansion satisfy

lim
k→∞

h(Θi,n, k)w(Θc
i,n, k)

h(Θi,n, k − 1)w(Θc
i,n, k − 1)

=
∑
j∈Θci,n

βj = si,n.
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Thus for large K, we have

eK(s) =

(1 + o(1))

∣∣∣∣∣∣
ln∑
i=1

∏
j∈Θi

β
αj
j c(Θi)h(Θi,K + 1)w(Θc

i ,K + 1)s
−(
∑
j∈Θi,n

αj+K)
(

1 +
si,n
s

+
(si,n
s

)2
+ . . .

)∣∣∣∣∣∣
≤ (1 + o(1))

ln∑
i=1

 ∏
j∈Θi,n

β
αj
j

∣∣c(Θi,n)h(Θi,n,K + 1)w(Θc
i,n,K + 1)

∣∣ s−(
∑
j∈Θi,n

αj+K)
(s− si,n)−1.
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Chapter 3

The sums of i.i.d. regularly varying

random variables and simulation

This paper is concerned with the efficient simulation of P (Sn > s) in situations where s is large

and Sn is the sum of n i.i.d. heavy-tailed random variables X1, . . . , Xn. The most efficient

and simplest estimators introduced in the rare event simulation literature are those proposed

by Asmussen and Kroese (2006) and Asmussen and Kortschak (2012). Although the main

techniques for facing the rare event problem are importance sampling and splitting, the estima-

tors of Asmussen, Kortschak and Kroese combine exchangeability arguments with conditional

Monte-Carlo to construct estimators whose relative errors go to 0 as s → ∞. In this paper,

we decompose P (Sn > s) as the sum of P(Mn > s) and P(Sn > s,Mn < s) as proposed by

Juneja (2007) because P(Mn > s) is known in closed form and is asymptotically equivalent to

P (Sn > s). We construct new efficient estimators of P(Sn > s,Mn < s) by splitting up it again

and then by using the same type of reliable methods as in Asmussen and Kroese (2006). We

show that these new estimators have smaller relative errors than the estimators of Asmussen,

Kortschak and Kroese. The conclusion of the numerical study is that our estimators compare

extremely favorably with previous ones.

3.1 Introduction

In a probabilistic model, a rare event is an event with a very small probability of occurrence

(typically between 10−6 and 10−10 or less). Rare events are of particular practical interest when

dealing with systems where the rare event is a catastrophic failure with possible important

human or monetary losses. Typical examples are given by failures in a public transport system

or in a nuclear power plant, failures of information processing systems or telecommunication
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networks, ruins of a large number of insurance companies or banks,... Therefore it is a critical

issue to be able to evaluate the probability of these rare events.

In many cases, the mathematical models are often too complicated to be solved by analytical or

numerical methods. Soft computing models and techniques are often used for complex systems

that remain intractable to conventional mathematical and analytical methods. Among others

we can quote artificial neural network models, image processing techniques, data-driven models

coupled with data-preprocessing techniques, classifier ensemble methods, artificial neural net-

work simulation methods (see e.g. for real applications: Cheng et al. (2005), Chau (2007),

Huang and Chau (2008), Wu et al. (2009), Zhang and Chau (2009), Taormina et al. (2012)).

The simulation of the probabilistic models and the use of Monte Carlo methods provide more

interesting alternative tools. However, estimation of rare event probabilities with the naive

Monte Carlo techniques requires a prohibitively large number of trials. It is therefore necessary

to use suitable variance reduction techniques as control variates, antithetic sampling, impor-

tance sampling, splitting,... In this paper, we focus on techniques for the efficient estimation of

tail probabilities involving sums of heavy tailed random variables. It is amongst the simplest

problems studied in the literature of rare event simulation, but also amongst the most chal-

lenging (see e.g. Chapter VI in Asmussen and Glynn (2007)). Such probabilities are of interest

for insurance companies: the wealth of the company is modelled as a stochastic process that

incorporates the gains due to insurance premiums and the losses due to claims. The failure

event corresponds to the ruin of the company, i.e. when its wealth becomes negative.

More specifically, we consider non-negative, independent, identically distributed (i.i.d.) regu-

larly varying heavy-tailed random variables X1, . . . , Xn with common distribution F and let

Sn = X1 + . . .+Xn. We are interested in the problem of efficiently estimating

z(s) = P (Sn > s)

for large s. It is well-known that rare event simulation techniques are quite different in the

light-tailed setting and in the heavy-tailed setting (see e.g. Chapter VI in Asmussen and Glynn

(2007)). The simulation method we propose here is only concerned with regularly varying heavy-

tailed distributions which are one of the most important subclasses of heavy-tailed distributions.

However modifications of the algorithm would be needed for other classes of distributions.

Let us denote by Z = Z(s) a random variable that can be generated by simulation and

has expectation equal to z(s). The usual performance measure is the relative error e(s) =

(Var (Z))1/2 /z(s). An estimator has the logarithmically efficient property if lim sups→∞ z(s)
εe(s) <

∞ for all ε > 0, it has the bounded relative error property if lim sups→∞ e(s) < ∞ and it has

the vanishing relative error property if lims→∞ e(s) = 0.
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The first logarithmically efficient estimator was proposed by Asmussen and Binswanger (1997)

and was based on a conditioning method. Asmussen, Binswanger and Hojgaard (2000) and

Juneja and Shahabuddin (2002) used importance sampling techniques for estimating z(s) and

obtained logarithmically efficient estimators. Asmussen and Kroese (2006) proposed an estima-

tor that combines an exchangeability argument with a conditional Monte Carlo idea

ZAK = nF̄ (Mn−1 ∨ (s− Sn−1))

where Mn−1 = max (X1, . . . , Xn−1) and Sn−1 = X1 + . . . + Xn−1. This estimator is shown in

Asmussen and Kroese (2006) to have bounded relative error and in Hartinger and Kortschak

(2009) to have vanishing relative error. The exact rates of decay of e (s) for ZAK have been

recently given in Asmussen and Kortschak (2012) under the assumption that the probability

density function of X1 exists and is given by f(x) = αL(x)/xα+1 where L is a slowly varying

function. If α > 2, they showed that, as s→∞,

eAK(s) = (1 + o (1))α [(n− 1)Var (X1)]1/2 s−1,

and if α < 2, that, as s→∞,

eAK(s) = (1 + o (1))
[
(n− 1) kαF̄ (s)

]1/2
,

where kα is a positive constant that depends on α (see Asmussen and Kortschak (2012) for the

case α = 2).

Asmussen and Kortschak (2012) also introduced related estimators with faster rates of decay

for the two cases: α > 2 and 1 < α < 2. If α > 2, they suggested the following estimator

ZAKo(1) = ZAK + n (E [Sn−1]− Sn−1) f (s) . (3.1)

They gave its exact rates of decays when the first derivative of f exists and is given by f ′(x) =

−α (α− 1)L(x)/xα+2. They showed that, if α > 4, then

eAKo(1)(s) = (1 + o (1))
α (α− 1)

2

[
Var

(
S2
n−1

)]1/2
s−2,

as s→∞, and if 2 < α < 4, then

eAKo(1)(s) = (1 + o (1))
[
(n− 1) k′αF̄ (s)

]1/2
,

as s → ∞, where k′α is a positive constant that depends on α (see Asmussen and Kortschak

(2012) for the case α = 4). If 1 < α < 2, they suggested to use an importance sampling method
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to improve on ZAK and proposed to consider the estimator Z
(2)
AKo = Z(b) + nZ(c) where

Z(b) = n (n− 1) F̄ (s/(2 (n− 1)))2 I (Sn > s,Xn−1 ∧Xn ≥Mn−2)

Z(c) =
(
F̄ (s− Sn−1)− F̄ (s)

)
I

(
Mn−1 ≤

s

2 (n− 1)

)
R+ F̄ (s)P

(
Mn−1 ≤

s

2 (n− 1)

)

with R =
∏n−1
i=1 f (Xi) /f̃ (Xi) and f̃ an importance sampling density of the form L̃ (s) /sα̃ such

that α̃ < 2α− 2. They showed that, as s→∞,

eAKo(2)(s) = O
(
s−1
)

.

Ghamami and Ross (2012) used the first time when the sum of the current maximum and Sn

exceeds s to improve ZAK : numerical examples for the standard Weibull distribution show that

a variance reduction is gained despite a four time longer computer time, but no theoretical

result on the rate of decay of the relative error is given. Other algorithms that share the feature

of vanishing relative error have also been investigated but they could be more complicated to

implement and their rates of decay are in general not very explicit: see Dupuis, Leder, and

Wang (2007) and Hult and Svensson (2012) in the setting of dynamic importance sampling, and

Gudmundsson and Hult (2012) in the setting of Markov chain Monte Carlo (MCMC).

In this paper, we will use the following decomposition

P (Sn > s) = P(Mn > s) + P(Sn > s,Mn < s) (3.2)

as in Juneja (2007). It is well-known that P (Sn > s) = (1 + o (1))P(Mn > s), as s → ∞, in

the regularly varying case and that the probability P(Mn > s) is easily evaluated in closed

form. Therefore, we only have to focus on developing efficient simulation techniques for P(Sn >

s,Mn < s). Instead of considering the importance sampling technique (as in Juneja (2007))

that only leads to estimators with bounded relative errors, we rather continue to decompose the

probability P(Sn > s,Mn < s):

P (Sn > s) = P(Mn > s) + P(Mn < s)P(Sn > s|Mn < s)

= P(Mn > s) + P(Mn < s)p1(s)

where

p1(s) = P(X
[0,s]
1 +X

[0,s]
2 + · · ·+X [0,s]

n > s)

with X
[a,b]
i = Xi|Xi ∈ [a, b] for any interval [a, b] ⊂ R+. We then define Ns as the number of

random variables X
[0,s]
i in the interval [s/n, s]. Ns has Binomial distribution with parameter

P(X
[0,s]
i > s/n) =

F (s)− F (s/n)

F (s)
= (1 + o (1)) (nα − 1)F̄ (s) ,
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as s→∞. By the law of total probability, we have

p1(s) =
n∑
i=1

P(Ns = i)P(X
[0,s]
1 +X

[0,s]
2 + · · ·+X [0,s]

n > s|Ns = i)

=
n∑
i=1

P(Ns = i)p1i (s)

where

p1i (s) = P(X
[0,s/n]
1 + · · ·+X

[0,s/n]
n−i +X

[s/n,s]
n−i+1 + · · ·+X [s/n,s]

n > s).

Since P(Mn > s) and P(Ns = i) for i = 1, . . . , n are explicitly known, we focus on constructing

independent random variables, P1i, that can be generated by simulation and have expectation

equal to p1i (s). Let

ZNR = P(Mn > s) + P(Mn < s)

n∑
i=1

P(Ns = i)P1i.

The variance of this estimator of z(s) is given by

Var (ZNR) = P(Mn < s)2
n∑
i=1

P(Ns = i)2Var (P1i) .

Therefore more attention should be paid to P11 since P(Ns = i) = O(F̄ (s)i). If we assume that,

for i = 2, . . . , n,

P1i =d I(X
[0,s/n]
1 + · · ·+X

[0,s/n]
n−i +X

[s/n,s]
n−i+1 + · · ·+X [s/n,s]

n )

then it is easely seen that, as s→∞,

Var (ZNR)

F̄ (s)2 = (1 + o (1)) (nα − 1)2Var (P11) +O(F̄ (s)2).

The main contributions of the paper are: (i) to provide efficient estimators of p11 (s) in order

to derive new estimators of P (Sn > s) and (ii) to prove that these new estimators are more

efficient than ZAK and its improvements: ZAKo(1) and ZAKo(2) .

Asmussen and Kortschak (2012) used Sn−1 as a control variate with ZAK for their estimator

ZAKo(1) (see Eq. (3.1)). We may note that, as mentioned in Section 3 of Juneja (2007), the

method proposed in this paper may also be viewed as using I{Mn>s} as a control variate in

estimating the probability P (Sn > s) with control coefficient equal to 1. The control variates

method is one of the most used variance reduction techniques for Monte Carlo methods. It

is popular because of an effective variance reduction in a simple theoretical framework, but

its main issue is the choice of a strong-correlated control variate as well as a suitable control
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coefficient. We see that this technique has to be paired with conditional Monte Carlo in our

case to provide finally efficient estimators.

This article is organised as follows. Section 2 introduces a first estimator that can be used for

any regularly varying distribution with tail index α > 0 such that the density function exists

and is at least I (α) times differentiable where I (α) is the integer part of α. Section 3 introduces

a second estimator that is less efficient that the previous estimator but more efficient that ZAK

for 0 < α < 1. This estimator is even though studied because it is not necessary to assume that

the density function exists. For both estimators, we provide upper bounds for their relative

errors.

3.2 A first improved estimator

We assume in this section that the probability density function of X1 exists and is at least I (α)

times differentiable for α ≥ 1. By the Taylor-Lagrange formula there exists µs,x ∈ [s−x, s] such

that

f(s− x) =

I(α)−1∑
k=0

(−1)kf (k)(s)
xk

k!
+ (−1)I(α)f (I(α))(µs,x)

xI(α)

I(α)!
.

This type of regularity assumption appears to be quite standard when one wants to improve

the efficiency of estimators. It is however crucial for this first approach.

Let S∗n−1 = X
[0,s/n]
1 + · · · + X

[0,s/n]
n−1 . The probability p11(s) may be rewritten in the following

way

p11(s) = P(X
[0,s/n]
1 + · · ·+X

[0,s/n]
n−1 +X [s/n,s]

n > s)

=
1

F (s)− F (s/n)

∫ s

s/n
f(x)P(S∗n−1 > (s− x))dx

=
1

F (s)− F (s/n)

∫ (n−1)s/n

0
f(s− x)P(S∗n−1 > x)dx.

If α ≥ 1, we have

p11(s) =
1

F (s)− F (s/n)

I(α)−1∑
k=0

f (k)(s)
(−1)k

k!
Mk,s −

∫ (n−1)s/n

0
Λ(s, x)P(S∗n−1 > x)dx


where

Mk,s =

∫ (n−1)s/n

0
xkP(S∗n−1 > x)dx =

E[(S∗n−1)(k+1)]

k + 1

=
∑

j1+...+jn−1=k+1

k!

j1! . . . jn−1!
E[(X

[0,s/n]
1 )j1 ] . . .E[(X

[0,s/n]
n−1 )jn−1 ]
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and

Λ(s, x) =

I(α)−1∑
k=0

(−1)kf (k)(s)
xk

k!
− f(s− x) = (−1)I(α)+1f (I(α))(µs,x)

xI(α)

I(α)!
.

If 0 < α < 1, we let Λ(s, x) = −f(s− x).

We denote by Y a random variable with uniform distribution on [0, (n− 1)/n]. Then we have

∫ (n−1)s/n

0
Λ(s, x)P

(
S∗n−1 > x

)
dx =

s (n− 1)

n
EY
[
Λ(s, sY )P(S∗n−1 > sY )

]
.

By using an exchangeability argument as in Asmussen and Kroese (2006), we get

∫ (n−1)s/n

0
Λ(s, x)P

(
S∗n−1 > x

)
dx

=
s (n− 1)2

n
E
Y,X

[0,s/n]
1 ,··· ,X[0,s/n]

n−2

[
Λ(s, sY )F̄

X
[0,s/n]
n−1

(
M×n−2 ∧ (s/n)

)]
where

M×n−2 =d max(X
[0,s/n]
1 , · · · , X [0,s/n]

n−2 , sY −X [0,s/n]
1 − · · · −X [0,s/n]

n−2 )

and

F̄
X

[0,s/n]
n−1

(x) =
[
F̄ (x)− F̄ (s/n)

]
/F (s/n).

Therefore we propose the following first estimator for p11(s)

P
(1)
11 =

1

F̄ (s/n)− F̄ (s)

I(α)−1∑
k=0

f (k)(s)
(−1)k

k!
Mk,s −

s (n− 1)2

n
Λ(s, sY )

F̄ (M×n−2 ∧ (s/n))− F̄ (s/n)

F (s/n)

 .

and the first estimator for z(s)

ZNR(1) = P(Mn > s) + P(Mn < s)

(
P(Ns = 1)P

(1)
11 +

n∑
i=2

P(Ns = i)P1i

)
.

Theorem 3.1. Let R(α) = α− I(α). Then if R(α) < 1/2

eNR(1)(s) = O
(
F̄ (s)

)
as s→∞, and if R(α) > 1/2

eNR(1)(s) = O
(
s−1/2−I(α)

)
as s→∞.

Note that, if f was only p times differentiable with p ∈ N and 0 ≤ p < I (α), we would obtain

eNR(1)(s) ≤ O
(
s−1/2−p).
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Proof: We have

Var
(
P

(1)
11

)
=

(
F̄ (s/n)

)2
(F̄ (s/n)− F̄ (s))2

(
s (n− 1)2

F (s/n)n

)2

Var

(
Λ(s, sY )

(
F̄ (M×n−2 ∧ (s/n))

F̄ (s/n)
− 1

))

≤
(
F̄ (s/n)

)2
(F̄ (s/n)− F̄ (s))2

(
s (n− 1)2

F (s/n)n

)2

E

Λ(s, sY )2

(
F̄ (M×n−2 ∧ (s/n))

F̄ (s/n)
− 1

)2
 .

Note that µs,sY ∈ [s(1− Y ), s] ⊂ [s/n, s] and that

sup
s≥0

sup
s/n≤x≤s

f (I(α)) (x)

f (I(α)) (s)
<∞

since f (I(α)) is a regularly varying function. Therefore

Λ(s, sY )2 =

(
f (I(α))(µs,sY )

I(α)!

)2

(sY )2I(α) = O

([
L(s)s−(α+1)

]2
)
Y 2I(α)

as s→∞.

Then, using the same arguments as in Asmussen and Glynn (2007) p. 275, we deduce that

M×n−2 is larger than sY/ (n− 1). It follows that

F̄ (s/n) ≤ F̄ (M×n−2 ∧ (s/n)) ≤ F̄ (sY/ (n− 1))

and we get

Var
(
P

(1)
11

)
= O

(
F̄ (s)2

)
E

[
Y 2I(α)

(
F̄ (sY/ (n− 1))

F̄ (s/n)
− 1

)2
]
.

If U has a uniform distribution on [0, 1], we may write

Var
(
P

(1)
11

)
= O

(
F̄ (s)2

)
E

[
U2I(α)

(
F̄ (sU/n)

F̄ (s/n)
− 1

)2
]

= O
(
F̄ (s)2

)
E

[
U2I(α)

((
F̄ (sU)

F̄ (s)

)2

− 2
F̄ (sU)

F̄ (s)
+ 1

)]
.

We have

E
[
U2I(α) F̄ (sU)

F̄ (s)

]
=

1

F̄ (s)

∫ 1

0
u2I(α)F̄ (su)du =

s−1−2I(α)

F̄ (s)

∫ s

0
v2I(α)F̄ (v)dv

=
s−1−2I(α)

F̄ (s)

∫ s

0
v2I(α)−αL(v)dv.
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Since 2I(α)− α > −1 for α > 0, we deduce from Karamata theorem that, as s→∞,∫ s

0
v2I(α)−αL(v)dv =

(1 + o(1))

2I(α)− α+ 1
s2I(α)−α+1L(s)

and

E
[
U2I(α) F̄ (sU)

F̄ (s)

]
=

(1 + o(1))

2I(α)− α+ 1
.

Moreover

E

[
U2I(α)

(
F̄ (sU)

F̄ (s)

)2
]

=
1

F̄ (s)2

∫ 1

0
u2I(α)F̄ 2(su)du =

s−1−2I(α)

F̄ 2(s)

∫ s

0
v2I(α)F̄ 2(v)dv

=
s−1−2I(α)

F̄ 2(s)

∫ s

0
v2I(α)−2αL2(v)dv.

When I(α) − α > −1/2 or equivalenty R(α) < 1/2, we deduce from Karamata theorem that,

as s→∞,

E

[
U2I(α)

(
F̄ (sU)

F̄ (s)

)2
]

=
(1 + o(1))

2I(α)− 2α+ 1
.

When I(α)− α < −1/2 or equivalenty R(α) > 1/2, we have, as s→∞,

E

[
U2I(α)

(
F̄ (sU)

F̄ (s)

)2
]

= (1 + o(1))
s−1−2I(α)

F̄ 2(s)
.

Therefore, if R(α) < 1/2, eNR(s) = O
(
F̄ (s)

)
and, if R(α) > 1/2, eNR(s) = O

(
s−1/2−I(α)

)
.

3.3 Second improved estimator

We now propose and study a second estimator for which it is not necessary to assume that the

density function exists. We will show that it is less efficient that the previous estimator ZNR(1)

but it is more efficient that ZAK for 0 < α < 1.

For s > ((n− 1) /n)−1−1/α, we split up p11(s) into two parts

p11(s) = P(X
[0,s/n]
1 + · · ·+X

[0,s/n]
n−1 +X [s/n,s]

n > s)

= P(X [s/n,s]
n < s− s1/(1+α))p11d(s) + P(X [s/n,s]

n > s− s1/(1+α))p11u(s)

where

p11d(s) = P(X
[0,s/n]
1 + · · ·+X

[0,s/n]
n−1 +X [s/n,s−s1/(1+α)]

n > s)

p11u(s) = P(X
[0,s/n]
1 + · · ·+X

[0,s/n]
n−1 +X [s−s1/(1+α),s]

n > s).
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We then use the method of Asmussen and Kroese (2006) to estimate p11d(s) and p11u(s) respec-

tively by

P11d = (n− 1) F̄
X

[0,s/n]
n−1

(M×,dn−2) and P11u = (n− 1) F̄
X

[0,s/n]
n−1

(M×,un−2).

where M×n−2,d and M×n−2,u are two independent random variables such that

M×n−2,d =d max(X
[0,s/n]
1 , · · · , X [0,s/n]

n−2 , s−X [s/n,s−s1/(1+α)]
n −X [0,s/n]

1 + · · ·+X
[0,s/n]
n−2 )

M×n−2,u =d max(X
[0,s/n]
1 , · · · , X [0,s/n]

n−2 , s−X [s−s1/(1+α),s]
n −X [0,s/n]

1 + · · ·+X
[0,s/n]
n−2 ).

Therefore we propose the following second estimator for p11(s)

P
(2)
11 = (n− 1)P(X [s/n,s]

n < s−s1/(1+α))F̄
X

[0,s/n]
n−1

(M×,dn−2)+(n− 1)P(X [s/n,s]
n > s−s1/(1+α))F̄

X
[0,s/n]
n−1

(M×,un−2).

and the second estimator for z(s)

ZNR(2) = P(Mn > s) + P(Mn < s)

(
P(Ns = 1)P

(2)
11 +

n∑
i=2

P(Ns = i)P1i

)
.

The threshold s−s1/(1+α) has been chosen such that the variances of the two components of P
(2)
11

contribute to the total variance in the same way. The following theorem gives an asymptotic

upper bound of the relative error of ZNR(2) .

Theorem 3.2. We have

eNR(2)(s) = O
(
s−α/(1+α)

)
as s→∞.

Proof: We have

Var
(
P

(2)
11

)
= P(X [s/n,s]

n < s− s1/(1+α))2Var (P11d) + P(X [s/n,s]
n > s− s1/(1+α))2Var (P11u) .

Using the same arguments as in Asmussen and Glynn (2007) p. 275, we deduce that

M×n−2,d ≥
s−X [s/n,s−s1/(1+α)]

n

n− 1
≥ s1/(1+α)

n− 1
.

Therefore we have

Var (P11d) ≤ (n− 1)2 F̄ 2

X
[0,s/n]
n−1

(
s1/(1+α)

n− 1

)
= (n− 1)2

(
F̄ (s1/(1+α)/ (n− 1))− F̄ (s/n)

F (s/n)

)2

= O
(
F̄ (s1/(1+α))2

)
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Figure 3.1: Measures of efficiency of the estimators
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as s→∞. Now note that

P
(
X [s/n,s]
n > s− s1/(1+α)

)
=

F (s)− F (s− s1/(1+α))

F (s)− F (s/n)
=
F̄ (s− s1/(1+α))− F̄ (s)

F̄ (s/n)− F̄ (s)

=
L
(
s
(
1− s−α/(1+α)

))
L (s)

O(s−α/(1+α)) = O(s−α/(1+α)).

Moreover its is clear that

P(X [s/n,s]
n < s− s1/(1+α)) = O (1) and Var (P11u) = O (1) .

It follows that

Var (P11) = O
(
s−2α/(1+α)

)
and eNR(s) = O

(
s−α/(1+α)

)
.

3.4 Comparisons of the relative errors and numerical examples

For the comparisons of the estimators, we assume without loss of generality that the slowly

varying function of F is equal to a constant. We then define for an estimator Z of z(s) a

measure of its efficiency by

γ (Z) = lim inf
s→∞

(
− log e(s)

log s

)
.

The larger this measure, the faster is the rate of decay of the relative error of the estimator.
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Figure 3.1 gives the exact values of γ for the estimators ZAK (α > 0), ZAKo(1) (α > 2), but only

lower bounds for the estimators ZAKo(2) (1 < α < 2), ZNR(1) (α > 0) and ZNR(2) (0 < α < 1)

as presented in the previous sections.

We see that the proposed estimators (ZNR(1) and ZNR(2)) provide from a theoretical point of

view improvements of Asmussen-Kroese estimator (ZAK) and Asmussen-Kortschack estimators

(ZAKo(1) and ZAKo(2)). We performed numerical experiments to check that these improvements

may be substantial in practice. We considered the Lomax distribution, also called Pareto Type

II distributions, for the distribution of Xi

P (Xi > x) =

(
1 +

x

β

)−α
, x ≥ 0.

It is essentially a Pareto distribution that has been shifted so that its support begins at zero. We

provide in Table 3.1 numerical results for the standard Lomax distribution (β = 1) for several

values of α (between 0.3 and 4.5) and s. The number of terms in the sum is fixed to n = 5.

The exact values of z(s) are computed by using the approach developed in Nguyen and Robert

(2013). The choice of this distribution and the choices of the values of its parameters are quite

standard for comparisons of different simulation methods in the regularly varying case (see e.g.

Asmussen and Kroese (2006), Hult and Svensson (2012)). We performed other simulations for

other sets of parameters (β = 0.5, 2, 5 and n = 10, 30, 50). Qualitatively similar results were

found.

Table 3.1 indicates that a substantial variance reduction is gained with ZNR(1) for all values of

α. ZNR(2) is less efficient than ZNR(1) but also provides very good results when 0 < α < 1.

3.5 Conclusion

This paper presents new algorithms to estimate efficiently the probability P (Sn > s) when s is

large and Sn is the sum of n i.i.d. regularly varying random variables. The numerical study

shows that the new estimators compare extremely favorably with previous ones. It is, of course,

recognized that there are limitations in the assumptions used in this study (in particular for the

first improved estimator for which it is assumed that the probability density function of the ran-

dom variables is sufficiently differentiable). In future, we will focus on how to take into account

not identically distributed random variables in the sum or how to take into account extreme

dependence between the random variables. In this way, the applicability of the algorithms will

be hugely improved.

Note however that, by using additional higher order correction terms for ZAKo(1) , it could be possible to
improve it.
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Table 3.1: Comparisons of the relative errors of the estimators

α s z eZAK eZAKo eZ
NR(1)

eZ
NR(2)

0.3 107 0.34171 0.37066 0.12173 0.12170
0.3 1010 0.04909 0.13014 0.02450 0.02462
0.5 104 0.04997 0.12747 0.01789 0.02073
0.5 106 0.00499 0.03997 0.001864 0.003141
0.7 104 0.08625 0.22165 0.59683 0.60577
0.7 107 6.299e-04 0.02316 0.007010 0.012578
0.9 104 1.265e-03 0.03152 0.003580 0.01067
0.9 105 1.582e-04 0.01740 0.000467 0.00193

1.5 1000 1.833e-03 0.13152 0.020663
1.5 104 5.073e-05 0.01384 0.007161
1.5 5× 104 4.484e-06 0.06678 0.046846

2.5 500 1.165e-05 0.07388 0.03128 8.521e-04
2.5 2000 2.907e-07 0.01506 1.86e-03 1.611e-04
2.5 5000 2.873e-08 0.00565 1.58e-03 1.266e-05

3.5 200 5.832e-07 0.08896 0.04663 6.059e-03
3.5 2000 1.444e-10 7.54e-03 4.04e-04 1.730e-06

4.5 100 7.750e-08 0.14966 0.09128 0.010299
4.5 1000 1.679e-12 0.01246 0.00136 4.19e-07
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Chapter 4

The sums of dependent regularly

varying variables and simulation

This paper focuses on efficient simulation of z(s) = P (Sn > s) in the situation where s is a

large value and Sn is the sum of n heavy-tailed random variables with the assumption that the

dependence is either an Archimedean copula or an Archimedean survival copula. In recent re-

search on this problem, almost all authors paid attention to the calculation of limit lim
s→∞

P (Sn>s)
P (X1>s)

where the distribution functions of Xi; i = 1, · · · , n are identical. Obviously, these results can

not be applied if the marginal random variables are differently distributed. Moreover, the rate

of convergence is hard to verify. Thus, we will estimate the probability z(s) using different sim-

ulation technique approaches. Simulation method has the advantage that it can be applied for

any range of dependence without identical marginal variables assumption. Numerical studies

are performed with different level of s and several Archimedean copulas in Section 4.4 prove

that our estimators are efficient at calculating probability z(s)

4.1 Introduction

Rare event simulation is a technique of simulating a small or very small probability (typically

between 10−6 and 10−10 or less). Generally, the analytical and numerical methods are impossi-

ble or too complicated to calculate such a small probability, especially in the case of dependence.

On the other hand, simulation techniques can be applied in complex situations such as high

dimensional calculation or the calculation with assumption of dependence between marginal

variables. However, the classical Monte Carlo method does not work on small probability simu-

lation since the relative errors (variation coefficient) are too large. So in rare event simulation,

86
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variance reduction techniques are key solutions. To evaluate an estimator in such context, As-

mussen and Glynn [3] introduced relative error as a measure of efficiency of an estimator, which

is defined as follows.

Definition 4.1 (Asmussen and Glynn, 2006). An unbiased estimator Z(s) of probability z(s) =

P(Sn > s) whose relative error calculated as follows e(Z(s)) = Sd(Z(s))
E(Z(s)) , is called

• Logarithmically efficient estimator if lim sups→∞ e(Z(s)) [z(s)]ε = 0 for all ε > 0.

• Estimator with bounded relative error if lim sups→∞ e(Z(s)) <∞.

• Estimator with vanishing relative error lim sups→∞ e(Z(s)) = 0.

In fact, estimating tail distribution of the sums of dependent random variables via simulation

is challenging. It requires a specific expression of dependence structure or a closed form of

conditional distribution functions, the case of elliptic distributions is an example. When the de-

pendence structure is elliptic, Blanchet and Rojas-Nandayapa [8] proposed a conditional Monte

Carlo estimator for tail distribution of the sum of log-elliptic random variables and proved that

it has a logarithmically efficient relative error. The sum of the log-elliptic random variables was

also estimated by Kortschak and Hashorva [13] using the simulation method that Asmussen and

Kroese introduced in [5], which presents favorable results especially in multivariate log-normal

case.

This paper considers the dependence structure of Archimedean copula and Archimedean sur-

vival copula. Having been defined by Nelsen [15], an n dimensional Archimedean copula C of

generator Φ is multivariate distribution function of n uniform random variables (U1, U2, · · · , Un)

C(u1, u2, · · · , un) = P(U1 ≤ u1, U2 ≤ u2, · · · , Un ≤ un)

= Φ
(
Φ←(u1) + Φ←(u2) + · · ·+ Φ←(un)

)
where Φ← is the inverse function of Φ. The inverse function of a function g is defined by

g←(x) = inf{t ∈ R+ : g(t) ≥ x}.

The conditions for Φ such that C is a multivariate distribution function is mentioned in McNeil

et al. [14] and will be discussed in Section 4.2.

Definition 4.2. Survival copula of X = (X1, X2, · · · , Xn), denoted C̃, is the copula associated

with the survival function of X:

C̃
(
F̄1(x1), · · · , F̄n(xn)

)
= F̄ (x1, x2, · · · , xn)
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In particular, if C is the copula of X and let U = (U1, U2, · · · , Ud) be a vector such that U

follows C, then we have the relation:

C̃(u1, · · · , un) = C̄ (1− u1, · · · , 1− un)

where C̄(u) = P(U1 > u1, · · · , Un > un).

Obviously, there is an one-one mapping from the set of Archimedean copulas and the set of

Archimedean survival copulas. In this paper, the notation ”Archimedean survival copula C of

generator Φ” is used to mention the survival copula of vector Ũ is the Archimedean copula of

generator Φ.

Under the dependence structure of Archimedean copula C, we denote n marginal random vari-

ables as X1, X2, · · · , Xn where the distribution functions of Xi are Fi for i = 1, 2, · · · , n. If

vector U = (U1, U2, · · · , Un) follows copula C where Ui are uniformly distributed in (0, 1) for

i = 1, 2, · · · , n, then we have the stochastic representation for vector X:

(X1, X2, · · · , Xn)
d
= (F←1 (U1), F←2 (U2), · · · , F←n (Un)).

The multivariate distribution function of X = (X1, X2, · · · , Xn) as a consequence is

P(X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) = P(F1(X1) ≤ F1(x1), · · · , Fn(Xn) ≤ Fn(xn))

= C(F1(x1), F2(x2), · · · , Fn(xn)).

Under the dependence structure of Archimedean survival copula C, we denote the marginal

variables as Y1, Y2, · · · , Yn. The ith marginal variable Yi has the same distribution function

Fi with Xi and there exists a unique vector U of uniform marginal distribution following an

Archimedean copula C such that

(Y1, Y2, · · · , Yn)
d
=
(
F̄←1 (U1), F̄←2 (U2), · · · , F̄←n (Un)

)
.

The multivariate survival distribution function of Y = (Y1, Y2, · · · , Yn) can be written via copula

C as follows

P(Y1 > y1, Y2 > y2, · · · , Yn > Yn) = P(F̄1(Y1) < F̄1(y1), · · · , F̄n(Yn) < F̄n(yn))

= C
(
F̄1(y1), F̄2(y2), · · · , F̄n(yn)

)
.

Assumption of marginal distributions

In this paper, the marginal random variables are assumed to be positive regularly varying, i.e

the marginal survival distributions F̄1, F̄2, · · · , F̄n are regularly varying functions.
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Definition 4.3. A random variable X of survival distribution function F̄X = P(X > x) is said

to be regularly varying at infinite with index −α with α ≥ 0 (written F̄ ∈ RV∞(−α)) if

lim
x→∞

F̄X(tx)

F̄X(x)
= t−α

In the case of α = 0, function F̄X is said to be slowly varying.

With the assumption of regular variation, we denote the tail indices of F̄1, F̄2, · · · , F̄n by

α1, α2, · · · , αn respectively. Note that the marginals are not necessarily identical. By the def-

inition, we can write F̄i(x) = li(x)x−αi where li are different slowly varying functions and αi

satisfy α1 ≤ α2 · · · ≤ αn. It is well-known that if all the variables are positive, then we have the

following upper and lower bounds for z(s)

max
i=1,2··· ,n

P(Xi > s) < P(Sn > s) ≤
n∑
i=1

P(Xi > s/n)

→ max
i=1,2··· ,n

F̄i(s) < z(s) ≤ n max
i=1,2··· ,n

F̄i(s/n).

Obviously, if α1 is strictly less than α2, then the upper and the lower bounds become asymp-

totically:

F̄1(s) < z(s) ≤ nF̄1(s/n).

Asymptotic result for the sums of regularly varying variables

There are a number of results for the sum of dependent regularly varying random variables

focusing on the asymptotic behavior of tail distribution of the sum. When marginal variables

are tail independent i.e lim
xi∧xj→∞

P(Xi > xi|Xj > xj) = 0 for all i 6= j, Jessen and Mikosch [11]

showed that if there exist n− 1 constants c+
2 , · · · , c+

n such that c+
i = lim

s→∞
F̄i(s)
F̄1(s)

, then

lim
s→∞

P(Sn > s)

F̄1(s)
= 1 +

n∑
i=2

c+
i .

If the marginal distributions are i.i.d, we have (c+
i = 1 ∀i) which leads to a well-known result

z(s) ∼ nF̄1(s). The sum of asymptotic independent regularly varying variable was also studied

by Yuen and Yin [19]. The authors proposed a result with weaker assumption than Jessen and

Mikosch [11] in the case of n is deterministic and then developed this result in the case of n is

a random variable (see Yuen and Yin [19]). A research for the sum of dependent and identical

regularly varying variables is carried out in Albrecher et al. [2]. They analyzed the tail behavior

of the sum of two regularly random variables following the coefficient λ̂ = lim
s→∞

P(X1 > s|X2 > s)
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and the ratio c = lim
s→∞

P(X1>s)
P(X2>s)

. Moreover, in Albrecher et al.’s [2], if the dependence is a bivariate

copula, the authors presented an asymptotic result for the sum via the density copula (see [2]).

Under the assumption of Archimedean survival copula dependence structure, Wuthrich [18]

obtained the limit qn(α, β) = P (SYn >s)
P (Y1>s)

with additional assumptions that marginal distributions

are identical and Archimedean generator is a regularly varying function.

Proposition 4.4 (Wuthrich, 2003). Suppose that Y1, Y2, · · · , Yn are n regularly varying random

variables of common survival distribution function F̄Y ∈ RV∞(−α), α > 0; and the dependence

between Yi; i = 1, 2, · · · , n is an Archimedean survival copula of generator Φ. If Φ is a regularly

varying function i.e Φ ∈ RV∞(−β), β > 0, then there exists the limit qn(α, β):

lim
s→∞

P(Y1 + · · ·+ Yn)

P(Y1 > s)
= lim

s→∞

P(SYn > s)

F̄Y (s)
= qn(α, β).

This limit can be calculated by a recursive formula:

qn(α, β) =
n∑
i=1

(−1)(i−1) Cin qn,i(α, β) i−β

where the qn,i(α, β) is the probability of

qn,i(α, β) = P
(
1/H

(i)
1 + · · ·+ 1/H(i)

n ≥ n
)
.

In this probability, vector (H
(i)
1 , · · · , H(i)

n ) has multivariate distribution function H(α,β)
n,i deter-

mined by

H(α,β)
n,i (h1, · · · , hn) =

h−α/β1 + · · ·+ h
−α/β
n

i

−β

for (h1, · · · , hn) ∈ [0, 1]i × [0,∞)n−i.

Sun and Li [17] examined the relation between multivariate regularly varying vector and Archimedean

copula with regularly varying generator to acquire an integral form for qn(α, β). In their re-

search, the marginal distributions are assumed to be identical and regularly varying. In the case

of Archimedean copula, if the generator satisfies (1− Φ) ∈ RV0(−β), the following limit exists

lim
s→∞

P (SXn > s)

P (X1 > s)
= qCn (α, β)
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where

qCn (α, β) =

∑
v
−1/α
i >1∫ δn

δv1 · · · δvn

1≤i1,··· ,ij≤n∑ [
(−1)j−1(v

1/β
i1

+ · · ·+ v
1/β
ij

)β
]
dv1 · · · dvn.

In the case of Archimedean survival copula, if the generator satisfies Φ ∈ RV∞(−β), then

lim
s→∞

P (SYn > s)

P (Y1 > s)
= qCn (α, β)

where

qCn (α, β) =

∑
v−1
i >1∫ δn

δv1 · · · δvn

(
v
−α/β
1 + · · ·+ v−α/βn

)−β
dv1 · · · dvn.

In this paper, we estimate the probability z(s) using techniques of conditional Monte Carlo sim-

ulation. The advantage is that we can reduce the complexity in calculating tail distribution of

the sum even if marginal distributions are different. Moreover, we can improve the performance

by increasing the number of replications. Our research focuses on the dependence structure

of Archimedean copula and Archimedean survival copula. In the following sections, we intro-

duce some simulation techniques related to Archimedean copula which are used to develop our

estimators.

4.2 Archimedean copula and simulation

The classical simulation method for a dependent vector bases on conditional distributions. Sup-

posed that vector U = (U1, U2, · · · , Un) has density function c(u1, u2, · · · , un) which can be

decomposed by conditioning into

c(u1, u2, · · · , un) = cn|n−1,··· ,1(un|un−1, · · · , u1) · · · c2|1(u2|u1)c1(u1)

where c1 is the density of U1. The classical procedure of simulating vector U is: simulate u1 based

on c1(u1), simulate U2 based on c2|1(u2|u1), · · · , simulate Un based on cn|n−1,··· ,1(un|un−1, · · · , u1).

Hence, vector U is created by calculating (n− 1) times the inverses of conditional distribution

functions, which is hard and takes a long time to obtain a result, especially if the distribu-

tion function of U is an Archimedean copula. To solve these problems, there are two effective

simulation techniques introduced in McNeil et al.[14] and in Brechmann et al.[9].
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Stochastic representation of Archimedean copula via a uniform vector on unit sim-

plex and a positive radius

In 2009, McNeil et al [14] showed that there is one-one mapping from the set of n dimensional

Archimedean copula generators and the set of n-monotone functions.

Theorem 4.5 (McNeil and Neslehova, 2009). A real function Φ: [0,∞)→ [0, 1] is the generator

of an n dimensional Archimedean copula if and only if it is an n−monotone function on [0,∞)

i.e it is differentiable up to the order (n − 2) and the derivatives satisfy (−1)iΦ(i)(x) ≥ 0, i =

0, 1, · · · , n− 2, further (−1)n−2Φ(n−2) is non-increasing and convex.

According to Theorem 4.5, McNeil et al. introduced a stochastic representation of vector U

following an Archimedean copula via a positive radius R and a uniform vector on unit simplex

Sn = {w1, · · · , wn ∈ (0, 1)n :
n∑
i=1

wi = 1}.

Theorem 4.6 (McNeil and Neslehova, 2009). If U = (U1, · · · , Un) follows an Archimedean

copula with generator Φ and W = (W1, · · · ,Wn) is an uniform vector on unit simplex Sn =

{w1, · · · , wn ∈ (0, 1)n :
n∑
i=1

wi = 1} then there exists a positive random variable R with distribu-

tion function satisfies

FR(x) = 1−
n−2∑
j=0

(−1)j
xj

j!
Φ(j)(x)− (−1)n−1

xn−1

(n− 1)!
Φ(n−1)+(x)

such that

(U1, · · · , Un)
d
= (Φ(RW1), · · · ,Φ(RWn))

As a result of Theorem 4.6 we have

• If vector X = (X1, · · · , Xn) has marginal distribution function F1, · · · , Fn and the de-

pendence is an Archimedean copula C of generator Φ, there exists a vector W uniformly

distributed on Sn and a positive random variable R of distribution function FR in 4.6 such

that

(X1, · · · , Xn)
d
= (F←1 (Φ(RW1)), · · · , F←n (Φ(RWn))).

• Similarly, if vector Y = (Y1, · · · , Yn) with marginal distribution functions F1, · · · , Fn and

the dependence is an Archimedean survival copula C of generator Φ, then

(Y1, · · · , Yn)
d
= (F̄←1 (Φ(RW1)), · · · , F̄←n (Φ(RWn))).
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Archimedean copula simulation based on the Kendall distribution function

Another way to simulate a vector X and a vector Y of marginal distribution functions F1, · · · , Fn
where dependence follows an Archimedean copula and an Archimedean survival copula is the

method of Brechmann et al. [9]. Arguing that the classical method does not work due to the

problem of calculating the inverse functions of conditional distributions Cj|j−1,··· ,1, Brechmann

provided an algorithm to simulate Archimedean copula using an intermediate variable Z whose

distribution function is known as Kendall distribution function (see Barbe et al. [6]). This

method eliminates the problem of numerical calculations of the inverse functions of Cj|j−1,··· ,1.

Proposition 4.7 (Brechmann et al., 2013). If U = (U1, · · · , Un) follows an Archimedean copula

C of generator Φ and variable Z is defined as Z = C(U), then the density of Z is

fZ(z) =
(−1)n−1

(n− 1)!
[Φ←(z)]n−1 (Φ←)(1)(z) Φ(n)

(
Φ←(z))

Moreover, conditional distributions Uj |Z,Uj−1, · · · , U1 with j = 1, · · · , d are

FUj |Z,Uj−1,··· ,U1
(uj |z, uj−1, · · · , u1) =

(
1−

Φ←(uj)

Φ←(z)−
j−1∑
k=1

Φ←(uk)

)d−j

for 1 > uj ≥ Φ
(
Φ←(z)−

j−1∑
k=1

Φ←(uk)
)
.

From these results, the inverse function of conditional distribution FUj |Z,Uj−1,··· ,U1
(uj |z, uj−1, · · · , u1)

can be calculated by an explicit formula. Indeed, if we have z, uj−1, · · · , u1 are realisations of

Z,Uj−1, · · · , U1 and w is a realisation of a uniform random variable in (0, 1), Uj is simulated as

follows

uj = F←Uj |Z,Uj−1,··· ,U1
(w|z, uj−1, · · · , u1)

→ Φ←(uj) = (1− w1/(d−j))
(
Φ←(z)−

j−1∑
k=1

Φ←(uk)
)

→ uj = Φ

(
(1− w1/(d−j))

(
Φ←(z)−

j−1∑
k=1

Φ←(uk)
))

According to this result, Brechmann et al. proposed that this method can be applied to simulate

a conditional Archimedean copula U = (U1, · · · , Un|U1 ∈ [a, b]) where [a, b] ∈ (0, 1). To do this,

in the first step, we simulate U1 uniformly distributed in [a, b], then variable Z is simulated via

the conditional distribution defined by the following proposition:
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Proposition 4.8. Conditional distribution FZ|U1
(z|u1) can be calculated by the Archimedean

generator and its derivatives

FZ|U1
(z|u1) =

(
Φ←
)(1)

(u1)
n−2∑
j=0

(−1)j

j!

(
Φ←(z)− Φ←(u1)

)j
Φ(j+1)(Φ←(z)) for z ∈ (0, u1)

(see the proof in section 4.5).

Thus, the procedure of simulating conditional Archimedean vector U = (U1, · · · , Un|U1 ∈ [a, b])

is: first, simulate uniform variable U1 satisfying U1 ∈ [a, b]; second, based on conditional dis-

tribution FZ|U1
in 4.8 to simulate Z numerically; finally, based on conditional distribution

FUj |Z,Uj−1,··· ,U1
in 4.7 to simulate U2, · · · , Un respectively.

4.3 Our estimators

Before discussing the estimators in details, we define some notations frequently used in this

section:

• If x is an n dimensional vector x = (x1, · · · , xn), x−i is the vector x after removing the

ith component xi.

• We note Mi(x1, · · · , xn) is the ith element of vector x after arranging the elements of x in

the non-decreasing order. Obviously, M1(x) = min(x) and Mn(x) = max(x).

• The notations zX(s), SXn ,M
X
n , · · · refer to z(s), Sn,Mn, · · · in the case of Archimedean

copula. Similarly, zY (s), SYn ,M
Y
n , · · · denote z(s), Sn,Mn, · · · in the case of Archimedean

survival copula.

• Probabilities P(MX
n > s) and P(MY

n > s) can be calculated by marginal distributions

F1, · · · , Fn and Archimedean generator Φ. If the dependent is an Archimedean copula C,

we have

P(MX
n > s) = 1− P(MX

n ≤ s) = 1− P(X1 ≤ s, · · · , Xn ≤ s)

= 1− P(F1(X1) ≤ F1(s), · · · , Fn(Xn) ≤ Fn(s))

= 1− C (F1(s), F2(s), · · · , Fn(s)) .
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If the dependence is an Archimedean survival C, then there exits a vector U following an

Archimedean copula C such that

P(MY
n > s) = 1− P(MY

n ≤ s) = 1− P (Y1 ≤ s, · · · , Yn ≤ s)

= 1− P
(
F̄1(Y1) ≥ F̄1(s), · · · , F̄n(Yn) ≥ F̄n(s)

)
= 1− P

(
U1 ≥ F̄1(s), · · · , Un ≥ F̄n(s)

)
= 1− C̄

(
F̄1(s), F̄2(s), · · · , F̄n(s)

)
.

The first estimator

Our first estimator is based on the simulation techniques that Brechmann et al. [9] used to

simulate conditional vector U|U1 ∈ [a, b] where U follows an Archimedean copula. After taking

probabilities P(MX
n > s) and P(MY

n > s) out, we apply the exchangeable property between

variables in a sum that Asmussen and Kroese used in their estimator. If the dependence between

regularly varying variables is an Archimedean copula,

zX(s) = P(MX
n > s) + P(SXn > s, s/n < MX

n ≤ s)

= P(MX
n > s) +

n∑
i=1

P(SXn > s,Xi = MX
n , s/n < MX

n ≤ s)

= P(MX
n > s) +

n∑
i=1

P(SXn > s,Xi = MX
n , s/n < Xi ≤ s)

= P(MX
n > s) +

n∑
i=1

P(s/n < Xi ≤ s) P(SXn > s,Xi = MX
n |s/n < Xi ≤ s).

Consequently, we propose the first estimator for zX(s)

ZXNR1(s) = P(MX
n > s) +

n∑
i=1

(
F̄i(s/n)− F̄i(s)

)
I{SXin >s,Xi

i=M
Xi
n }

where SXin , Xi
i and MXi

n are SXn , Xi and MX
n conditioning on s/n < Xi ≤ s. The most challeng-

ing problem here is the technique of simulating vector (Xi
1, · · · , Xi

n) = (X1, · · · , Xn|s/n < Xi ≤
s) where the dependence of X is an Archimedean copula. Via transformations Ui

d
= Fi(Xi),

conditional vectors X|Xi ∈ (s/n, s) become

(X1, · · · , Xn|s/n < Xi ≤ s)
d
= (F←1 (U1), · · · , F←n (Un)|s/n < F←i (Ui) ≤ s)
d
= (F←1 (U1), · · · , F←n (Un)|Fi(s/n) < Ui ≤ Fi(s))
d
= (F←1 (U i+1 ), · · · , F←n (U i+n ))
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where (U i+1 , · · · , U i+n ) = (U1, · · · , Un|Fi(s/n) < Ui ≤ Fi(s)). Similarly, if Y = (Y1, · · · , Yn)

follows an Archimedean survival copula C, then

(Y1, · · · , Yn|s/n < Yi ≤ s)
d
= (F̄←1 (U1), · · · , F̄←n (Un)|s/n < F̄←i (Ui) ≤ s)
d
= (F̄←1 (U1), · · · , F̄←n (Un)|F̄i(s/n) > Ui ≥ F̄i(s))
d
= (F̄←1 (U i−1 ), · · · , F̄←n (U i−n ))

where (U i−1 , · · · , U i−n ) = (U1, · · · , Un|F̄i(s/n) > Ui ≥ F̄i(s)). With conditional vectors Y|s/n <
Yi ≤ s, we have the first estimator for zY (s):

ZYNR1(s) = P(MY
n > s) +

n∑
i=1

(
F̄i(s/n)− F̄i(s)

)
I{SYin >s,Y ii =M

Yi
n }

where SYin , Y i
i and MYi

n are SYn , Yi and MY
n conditioning on s/n < Yi ≤ s.

Proposition 4.9. Estimators ZXNR1(s) and ZYNR1(s) have bounded relative errors. (see the

proofs in Section 4.5.)

Algorithm for ZNR1(s)

• Archimedean copula

– For i = 1, 2, · · · , n; independently simulate U i+i uniformly distributed in (Fi(s/n), Fi(s)).

– For each U i+i in the first step, simulate Z based on conditional distribution FZ|Ui

and then simulate (U i+1 , · · · , U i+i−1, U
i+
i+1, U

i+
n ).

– For each j = 1, 2, · · · , n,, calculate Xi
j = F←j (U i+j ) and return I{SXin >s,Xi

i=M
Xi
n }

which takes values 0 or 1.

– Return ZXNR1(s) = P(MX
n > s) +

∑n
i=1

(
F̄i(s/n)− F̄i(s)

)
I{SXin >s,Xi

i=M
Xi
n }

.

• Archimedean survival copula

– For i = 1, 2, · · · , n; independently simulate U i−i uniformly distributed in (F̄i(s/n), F̄i(s)).

– For each U i−i in the first step, simulate Z based on conditional distribution FZ|Ui

and then simulate (U i−1 , · · · , U i−i−1, U
i−
i+1, U

i−
n ).

– For each j = 1, 2, · · · , n,, calculate Y i
j = F←j (U i−j ) and return I{SYin >s,Y ii =M

Yi
n }

which

takes values 0 or 1.

– Return ZYNR1(s) = P(MY
n > s) +

∑n
i=1

(
F̄i(s/n)− F̄i(s)

)
I{SYin >s,Y ii =M

Yi
n }

.



Chapter 4. The sums of dependent regularly varying variables and simulation 97

It is remarkable that the technique of estimating ZNR1(s) can be applied for the sums of reg-

ularly varying variables with any dependence structure and the estimators have the bounded

relative error. The key solution is how to simulate conditional random vector X|s/n < Xi ≤ s.
Unfortunately, numerical performance of ZNR1(s) presented in Section 4.4 is not as good as the

other estimators.

The second estimator

The construction of the second estimator is based on the stochastic representation of Archimedean

copula by McNeil et al [14]. As stated in Section 4.2, if the dependence of X is an Archimedean

copula, we have

(X1, · · · , Xn)
d
= (F←1 (Φ(RW1)), · · · , F←n (Φ(RWn)))

where the distribution function of R is as in Theorem 4.6 and W is a vector uniformly distributed

on Sn. Probability zX(s) can be written as follows

zX(s) = P (MX
n > s) + P (SXn > s,MX

n ≤ s)

= P (MX
n > s) + P

(
n∑
i=1

F←i (Φ(RWi)) > s, max
i=1,··· ,n

{F←i (Φ(RWi))} ≤ s

)

= P (MX
n > s) + P

 n∑
i=1

F←i (Φ(RWi)) > s,R ≥ max
i=1,··· ,n

Φ←(Fi(s))

Wi


 .

If the dependence between regularly varying marginals is an Archimedean survival copula, where

the stochastic representation of Y can be written according to McNeil et al [14]

(Y1, · · · , Yn)
d
=
(
F̄←1 (Φ(RW1)), · · · , F̄←n (Φ(RWn))

)
,

we have probability zY (s)

zY (s) = P (MY
n > s) + P (SYn > s,MY

n ≤ s)

= P (MY
n > s) + P

(
n∑
i=1

F̄←i (Φ(RWi)) > s, max
i=1,··· ,n

{
F̄←i (Φ(RWi))

}
≤ s

)

= P (MY
n > s) + P

 n∑
i=1

F̄←i (Φ(RWi)) > s,R ≤ min
i=1,··· ,n

Φ←(F̄i(s))

Wi


 .

The second estimators for zX(s) and zY (S) are obtained conditioning on W:
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• Under Archimedean copula,

ZXNR2(s) = P (MX
n > s) + FR(UX(W, s))− FR(LX(W, s))

where

UX(W, s) = sup{r ∈ R+ :
n∑
i=1

F←i (Φ(rWi)) ≤ s}

LX(W, s) = max
i=1,··· ,n

Φ←(Fi(s))

Wi

 .

• Under Archimedean survival copula, we have

ZYNR2(s) = P (MY
n > s) + FR(UY (W, s))− FR(LY (W, s))

where

UY (W, s) = min
i=1,··· ,n

Φ←(F̄i(s))

Wi



LY (W, s) = inf{r ∈ R+ :
n∑
i=1

F̄←i (Φ(rWi)) ≥ s}. (4.1)

Note that if the marginal distributions are continuous and strictly increasing, then UX(W, s)

and LY (W, s) are unique roots of equations
n∑
i=1

F←i (Φ(xWi)) = s and
n∑
i=1

F̄←i (Φ(xWi)) = s

respectively. The quality of estimators ZYNR2(s) will be verified with the assumption that the

Archimedean generator is regularly varying.

Proposition 4.10. If (Y1, · · · , Yn) follows an Archimedean survival copula C of generator Φ

satisfies: Φ(n−2) is differentiable and Φ ∈ RV∞(−β);β > 0, then ZYNR2(s) has a bounded relative

error. (see the proof in Section 4.5).

Algorithm for ZNR2(s)

• Archimedean copula

– Let (E1, E2, · · · , En) be n i.i.d exponential r.v of parameter 1, calculate Wi = Ei/
n∑
j=1

Ej.

– UX(W, s) is calculated numerically from Equation 4.1 and LX(W, s) is determined

from Equation 4.1
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– Calculate derivatives Φ(j)(x) for j = 1, · · · , n − 1 and then distribution function

FR(x)

– Return ZXNR2(s) = P (MX
n > s) + FR(UX(W, s))− FR(LX(W, s))

• Archimedean survival copula

– Let (E1, E2 · · · , En) be n i.i.d exponential r.v of parameter 1, calculate Wi = Ei/
n∑
j=1

Ej.

– UY (W, s) is determined from Equation 4.1 and then calculate LY (W, s) numerically

from 4.1

– Calculate derivatives Φ(j)(x) for j = 1, · · · , n − 1 and then distribution function

FR(x)

– Return ZYNR2(s) = P (MY
n > s) + FR(UY (W, s))− FR(LY (W, s))

The third estimator

This section presents another estimator for z(s) which has better numerical performances than

ZNR1(s) and ZNR2(s). We separate probability z(s) into

P(Sn > s) = P(Mn > s) + z1(s) + z2(s)

where P(Sn > s) is deterministic, z1(s) = P(Sn > s,Mn−1 ≤ λs,Mn ≤ s), z2(s) = P(Sn >

s,Mn−1 > λs,Mn ≤ s) and λ is a positive less than 1/n. In z1(s), inequation Mn−1 ≤ λs

implies that there is only one variable taking a large value. Consequently, we estimate z1(s)

conditionally on X−i. In z2(s), there are at least two variables taking large values, so it is

coherent if we estimate z2(s) conditionally on uniform vector W on unit simplex Sn.

Estimating z2(s) conditionally on a uniform vector on Sn

If the dependence structure is an Archimedean copula, according to McNeil et al. [14], the

stochastic representation of (X1, · · · , Xn) is (F←1 (Φ(RW1)), · · · , F←n (Φ(RWn))). Hence, proba-

bility zX2 (s) = P(SXn > s,MX
n−1 > λs,MX

n ≤ s) becomes

zX2 (s) = P(

n∑
i=1

F←i
(
Φ(WiR)

)
> s,Mn−1{F←i

(
Φ(WiR)

)
} > λs,Mn{F←i

(
Φ(WiR)

)
} ≤ s)

= P(R < UX(W, s), R < Mn−1{
Φ←
(
Fi(λs)

)
Wi

}, R ≥ LX(W, s)).
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Similarly, under Archimedean survival copula,

zY2 (s) = P(
n∑
i=1

F̄←i
(
Φ(WiR)

)
> s,Mn−1{F̄←i

(
Φ(WiR)

)
} ≥ λs,Mn{F̄←i

(
Φ(WiR)

)
} ≤ s)

= P(R > LY (W, s), R ≥M2{
Φ←(F̄i(λs))

Wi
}, R ≤ UY (W, s)).

Conditioning on W, we have estimator ZXNR3,2(s) for zX2 (s)

ZXNR3,2(s) = FR
(
UX(W, s) ∧Mn−1{

Φ←
(
Fi(λs)

)
Wi

}
)
− FR

(
LX(W, s)

)
= FR

(
UXλ (W, s)

)
− FR

(
LX(W, s)

)
with UX(W, s), LX(W, s) are from 4.1, 4.1 respectively, and

UXλ (W, s) = UX(W, s) ∧Mn−1{
Φ←
(
Fi(λs)

)
Wi

}. (4.2)

Under Archimedean survival copula,

ZYNR3,2(s) = FR
(
UY (W, s)

)
− FR

(
LY (W, s) ∨M2{

Φ←(F̄i(λs))

Wi
}
)

= FR
(
UY (W, s)

)
− FR

(
LYλ (W, s)

)
with UY (W, s), LY (W, s) are from 4.1, 4.1 respectively, and

LYλ (W, s) = LY (W, s) ∨M2{
Φ←(F̄i(λs))

Wi
}. (4.3)

Proposition 4.11. There exists a constant c such that the variance of ZYNR3,2(s) is asymptot-

ically bounded by c× z(s). (see the proof in Section 4.5).

Asmussen and Kroese’s method to estimate z1(s).

The idea of Asmussen and Kroese’s method is to use MX
n as variable controlling SXn . We develop

probability z1(s) as follows

P(SXn > s,MX
n−1 < λs,MX

n < s) =
n∑
i=1

P(SXn > s,MX
n−1 < λs,MX

n < s,Xi = MX
n )

=
n∑
i=1

P(SXn > s,max{X−i} < λs,Xi < s,Xi = MX
n )
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For each i = 1, 2, · · · , n, we propose the use of estimator Z
[i]X
NR3,1(s) for P(SXn > s,max{X−i} <

λs,Xi < s,Xi = MX
n ) by conditioning on X−i = x−i:

Z
[i]X
NR3,1(s) = I{max{x−i}<λs} P

s > X∗i > s−
n∑

j=1,j 6=i
xj


where X∗i = Xi|X−i = x−i. Note that if max{x−i} < λs then

s−
n∑

j=1,j 6=i
xj > (1− (n− 1)λ)s > s/n > λs > max{x−i}

which implies condition Xi > max{X−i} is definitely correct. Estimator ZXNR3,1(s) for zX1 (s) is

then defined by

ZXNR3,1(s) =
n∑
i=1

Z
[i]X
NR3,1(s).

In the case of marginal distributions are identical, we have ZXNR3,1(s) = nI{max{x−1}<λs} P(s >

X∗1 > s− sum(x−i)) as original Asmussen and Kroese’s estimator. Under the assumption that

the dependence follows an Archimedean survival copula, we employ the same method.

To perform the calculations, we need conditional distributions X∗i = Xi|X−i = x−i and Y ∗i =

Yi|Y−i = y−i. The distribution of X∗i can be obtained directly

FX∗i (xi) = P(X∗i ≤ xi) =

Φ(n−1)
( n∑
j=1

Φ−1(Fj(xj))
)

Φ(n−1)
( n∑
j=1,j 6=i

Φ−1(Fj(xj))
)

However, in the case of Archimedean survival copula, the expression for distribution of Y ∗i is

more complex.

Proposition 4.12. If random variables Y1, · · · , Yn of distribution functions F1, · · · , Fn with

the dependence follows an Archimedean survival copula C, then the distribution function of

Y ∗i = Yi|Y−i = y−i is

FY ∗i (yi) = P(Y ∗i ≤ yi) = 1−
Φ(n−1)

( n∑
j=1

Φ−1(F̄j(yj))
)

Φ(n−1)
( n∑
j=1,j 6=i

Φ−1(F̄j(yj))
)

(see the proof in Section 4.5)

Unfortunately, the relative error of ZNR3,1(s) is not bounded if there is no assumption for

Archimedean generator. Consequently, the relative error of ZNR3(s) is not bounded either.

However, numerical performances of this estimator are better than ZNR2(s) in some situations
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when parameter λ takes appropriate values. Moreover, in almost all cases, ZNR3(s) is better

than ZNR1(s) which is proved to have a bounded relative error.

Algorithm for ZNR3(s)

• Archimedean copula

– Let (E1, E2 · · · , En) be n i.i.d exponential r.v of parameter 1, calculate Wi = Ei/
n∑
j=1

Ej.

– Calculate UXλ (W, s) from 4.2 and LX(W, s) from 4.1

– For i = 1, 2, · · · , n; simulate vector U−i following (n− 1) dimensional Archimedean

copula of generator Φ and then calculate Xj = F←j (Uj) for j 6= i. After that,

calculate the value of Z
[i]X
NR3,1(s) = I{max{x−i}<λs}

(
FX∗i (s)− FX∗i (s− sum(x−i))

)
– Return ZXNR3(s) = P (MX

n > s) + FR(UXλ (W, s))− FR(LX(W, s)) +
n∑
i=1

Z
[i]X
NR3,1(s)

• Archimedean survival copula

– Let (E1, E2 · · · , En) be n i.i.d exponential r.v of parameter 1, calculate Wi = Ei/
n∑
j=1

Ej.

– Calculate UY (W, s) from 4.1 and LYλ (W, s) from 4.3

– For i = 1, 2, · · · , n; simulate vector U−i following (n− 1) dimensional Archimedean

copula of generator Φ and then calculate Yj = F̄←j (Uj) for j 6= i. After that, calculate

the value of Z
[i]Y
NR3,1(s) = I{max{y−i}<λs}

(
FY ∗i (s)− FY ∗i (s− sum(y−i))

)
– Return ZYNR3(s) = P (MY

n > s) + FR(UY (W, s))− FR(LYλ (W, s)) +
n∑
i=1

Z
[i]Y
NR3,1(s)

The fourth estimator

In this section, with the same idea of separating probability P(Sn > s,Mn ≤ s) into two parts,

we introduce the 4th estimator for z(s), called ZNR4(s), which has bounded relative error under

Archimedean survival copula without any assumption of Φ. First, with κ is chosen in (1/n, 1),

we decompose probability z(s) into

z(s) = P(Mn > s) + P(Sn > s,Mn ≤ s)

= P(Mn > s) + P(Sn > s, κs < Mn ≤ s) + P(Sn > s,Mn ≤ κs).

Probability P(Sn > s, κs < Mn ≤ s) will be estimated by the same method of estimating

ZNR1(s) while probability P(Sn > s,Mn ≤ κs) will be estimated conditionally on W ∈ Sn. If
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the dependence structure is an Archimedean copula, we have

zX(s) = P(MX
n > s) +

n∑
i=1

(
F̄i(κs)− F̄i(s)

)
P(SXn > s,Xi = MX

n |κs < Xi ≤ s)

+ P

 n∑
i=1

F←i (Φ(RWi)) > s,R ≥ max
i=1,··· ,n

Φ←(Fi(κs))

Wi


 .

This formula gives the 4th estimator ZXNR4(s):

ZXNR4(s) = P(MX
n > s) +

n∑
i=1

(
F̄i(κs)− F̄i(s)

)
I{SXκin >s,Xκi

i =MXκi
n } + FR(UX(W, s))− FR(LXκ (W, s))

with Xκi
j = Xj |κs < Xi ≤ s; UX(W, s) is defined in 4.1 and

LXκ (W, s) = max
i=1,··· ,n

Φ←(Fi(κs))

Wi

 . (4.4)

Similarly, if the dependence is an Archimedean survival copula

zY (s) = P(MY
n > s) +

n∑
i=1

(
F̄i(κs)− F̄i(s)

)
P(SYn > s, Yi = MY

n |κs < Yi ≤ s)

+ P

 n∑
i=1

F̄←i (Φ(RWi)) > s,R ≤ min
i=1,··· ,n

Φ←(F̄i(κs))

Wi




which gives the 4th estimator ZYNR4(s)

ZYNR4(s) = P(MY
n > s) +

n∑
i=1

(
F̄i(κs)− F̄i(s)

)
I{SY κin >s,Y κii =MY κi

n } + FR(UYκ (W, s))− FR(LY (W, s))

with Y κi
j = Yj |κs < Yi ≤ s; LY (W, s) is defined in 4.1 and

UYκ (W, s) = min
i=1,··· ,n

Φ←(F̄i(κs))

Wi

 . (4.5)

Proposition 4.13. ZYNR4(s) is an estimator with bounded relative error. (see the proof in

Section 4.5)

Algorithm for ZNR4(s)

• Archimedean copula
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– For each i = 1, 2, · · · , n, simulate vector (Xκi
1 , · · · , Xκi

n ) = (X1, · · · , Xn|κs < Xi ≤

s), then calculate ZXNR4,1(s) =
n∑
i=1

(
F̄i(κs)− F̄i(s)

)
I{SXκin >s,Xκi

i =MXκi
n }.

– Calculate UX(W, s) from 4.1 and LXκ (W, s) from 4.4.

– Return ZXNR4(s) = P (MX
n > s) + ZXNR4,1(s) + F̄R(UX(W, s))− F̄R(LXκ (W, s)).

• Archimedean survival copula

– For each i = 1, 2, · · · , n, simulate vector (Y κi
1 , · · · , Y κi

n ) = (Y1, · · · , Yn|κs < Yi ≤ s),

then calculate ZYNR4,1(s) =
n∑
i=1

(
F̄i(κs)− F̄i(s)

)
I{SY κin >s,Y κii =MY κi

n }.

– Calculate UYκ (W, s) from 4.5 and LY (W, s) from 4.1.

– Return ZYNR4(s) = P (MY
n > s) + ZYNR4,1(s) + F̄R(UYκ (W, s))− F̄R(LY (W, s)).

4.4 Numerical studies

The numerical performances of the 4 estimators are discussed in this section. The results contain

the calculations of the probability that the sum of 5 Lomax random variables of the same tail

index - 2.5 and the same parameter β = 1 is larger than s. The dependence is assumed to be

a Clayton copula, a Gumbel copula, a Clayton survival copula and a Gumbel survival copula.

Even in some cases, the quality of the estimators is not verified; we still do the simulation

because their numerical performances are favorable. For estimators ZNR3(s) and ZNR4(s), the

choices of λ and κ are sensitive. In fact, we choose the values that minimize the numerical

standard deviations of the estimators.

Clayton copula

The generator of Clayton copula of parameter θ ∈ (0,∞) and the inverse function:

Φ(t) =

1 +
t

θ

−θ ; Φ←(t) = θ
(
t−1/θ − 1

)
; (Φ←)(1) (t) = −t−1/θ−1.

The formula for n-dimensional Clayton copula

C(u1, · · · , un) =
(
u
−1/θ
1 + · · ·+ u−1/θ

n − (n− 1)
)−θ
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The derivatives of the generator are calculated as follows

Φ(k)(t) =

1 +
1

θ

1 +
2

θ

 · · ·
1 +

k − 1

θ

 1 +
t

θ

−θ−k+1

The Clayton copula has the generator satisfying the Proposition 4.10: Φ ∈ RV∞(−θ) with

θ > 0, i.e estimator ZYNR2(s) has bounded relative error under Clayton survival copula.

Gumbel copula

The generator of Gumbel copula of the parameter b ∈ (0, 1) and the inverse function:

Φ(t) = exp(−xb) ; Φ←(t) = (− log(t))1/b ; Φ←(t) =
1

bt
(− log(t))1/b−1 .

The formula of n-dimensional Clayton copula:

C(u1, · · · , un) = exp

(
−
[
(− log(u1))1/b + · · ·+ (− log(un))1/b

]b)
.

It is hard to derive a closed form for the kth derivative of Gumbel copula generator. In this

section, with n = 5, we have to do the calculations until the 4th derivative:

Φ(1)(t) = exp(−xb)
(
−btb−1

)
Φ(2)(t) = exp(−tb)

(
−b(b− 1)tb−2 + b2t2b−2

)
Φ(3)(t) = exp(−tb)

(
−b(b− 1)(b− 2)tb−3 + 3b2(b− 1)t2b−3 − b3t3b−3

)
Φ(4)(t) = exp(−tb)×(

−b(b− 1)(b− 2)(b− 3)tb−4 + b2(b− 1)(7b− 11)t2b−4 − 6b3(b− 1)t3b−4 + b4t4b−4
)
.

There are three levels of copulas dependence in this section using Kendall’s τ : The weak level

of dependence is when τ = 0.1, the normal level of dependence is when τ = 0.5 and the strong

level of dependence is when τ = 0.9. Parameter θ of Clayton copula and parameter b of Gumbel

copula are determined via τ

θ =
1− τ

2τ
and b = 1− τ.

According to the numerical results, it is remarkable that ZNR1 has bounded relative error.

For example, under the assumption that the dependence is a Clayton survival copula with

Kendall’s τ is equal to 0.5, when s increases from 20 (Table 4.3) to 200 (Table 4.6), the value of
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z(s) decreases from 0.01639236 to 8.67011E-05, but the relative error of ZNR1 does not change:

2.034 compared to 2.036.

Although ZNR1(s) is proved to have a bounded relative error under any dependence structure,

the numerical performances of this estimator is not better than ZNR2(s). Note that ZNR2 has

bounded relative error only when the dependence structure is an Archimedean survival copula

of generator Φ ∈ RV∞(β), that is the case of Clayton survival copula in this section. However,

except the case of Clayton copula, ZNR2 presents acceptable results in most cases. For example,

in Table 4.3, under Gumbel survival copula, ratio e(ZNR1)
e(ZNR2) equals to 2.378

0.065 ≈ 37; or in Table 4.7,

this ratio under Gumbel copula is approximated to 1.973
0.134 ≈ 15.

The construction of ZNR3 is more complex than that of ZNR2; however, the 3rd estimator has no

numerical improvement compared to the 2nd one except for the case of Clayton copula. Indeed,

in Table 4.5, the relative error of ZNR3 is 0.480 while the relative error of ZNR2 is 3.396 or in

Table 4.6, the relative error of ZNR3 is 0.182 while the relative error of ZNR2 is 2.882. Under

the other dependence structures, the relative errors of ZNR3 and ZNR2 are almost the same.

The 4th estimator has bounded relative error under Archimedean survival copula and it presents

favorable numerical results even when the dependence structure is an Archimedean copula. For

example, ZNR4 has the smallest relative error under Clayton copula in all tables. Under Gumbel

copula, except Table 4.4 where s = 20 and Kendall’s τ = 0.9 or Table 4.7 where s = 200 and

Kendall’s τ = 0.9, ZNR4 also has the smallest relative error. Under Archimedean survival

copulas, there is not much difference between the relative error of ZNR2, ZNR3 and ZNR4.
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4.5 Intermediary proofs

Proof of Proposition 4.8

From the conditional distribution FUj |Z,Uj−1,··· ,U1
(uj |z, uj−1, · · · , u1) with j = 1 we have the

conditional distribution FU1|Z

FU1|Z(u1|z) =
(
1−

Φ←(u1)

Φ←(z)

)d−1

for z < u1 < 1. Because the marginal density of U1 is 1 on (0, 1), with the density of Z in

Proposition 4.7, we have the conditional density of Z|U1

fZ|U1
(z|u1) =

(Φ←)(1)(u1)

(n− 2)!

(
Φ←(u1)− Φ←(z)

)n−2
(Φ←)(1)(z)Φ(n)

(
Φ←(z)

)
for 0 < z < u1. The distribution function of Z is calculated as

FZ|U1
(z|u1) =

(
Φ←
)(1)

(u1)
(−1)n−2

(n− 2)!

z∫
0

(
Φ←(v)− Φ←(u1)

)n−2(
Φ←
)(1)

(v)Φ(n)
(
Φ←(v)

)
dv

= −
(
Φ←
)(1)

(u1)
(−1)n−2

(n− 2)!

∞∫
Φ←(z)

(
v − Φ←(u1)

)n−2
Φ(n)(v)dv

= −
(
Φ←
)(1)

(u1)
(−1)n−2

(n− 2)!

∞∫
Φ←(z)

(
v − Φ←(u1)

)n−2
d
(
Φ(n−1)(v)

)

= −
(
Φ←
)(1)

(u1)
(−1)n−2

(n− 2)!

[(
v − Φ←(u1)

)n−2
Φ(n−1)(v)|∞Φ←(z)

−
∞∫

Φ←(z)

(n− 2)
(
v − Φ−1(u1)

)n−3
Φ(n−1)(v)dv

]

Note that lim
v→∞

(
v − Φ←(u1)

)j
Φ(j)(v) = 0 for all j = 1, · · · , n − 2. The distribution of Z

conditioning on U1 is then

FZ|U1
(z|u1) =

(
Φ←
)(1)

(u1)
[(−1)n−2

(n− 2)!

(
Φ←(z)− Φ←(u1)

)n−2
Φ(n−1)(Φ←(z))

−
(−1)n−3

(n− 3)!

∞∫
Φ←(z)

(
v − Φ←(u1)

)n−3
Φ(n−1)(v)dv

]
= · · · · · ·

=
(
Φ←
)(1)

(u1)

n−2∑
j=0

(−1)j

j!

(
Φ←(z)− Φ←(u1)

)j
Φ(j+1)(Φ←(z))
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for z ∈ (0, u1).

Proof of Proposition 4.9

We can verify this property easily: the variance of ZXNR1(s) is bounded by:

Var(ZXNR1(s)) = var

(
n∑
i=1

(
F̄i(s/n)− F̄i(s)

)
I{SXin >s,Xi

i=M
Xi
n }

)

=

n∑
i=1

(
F̄i(s/n)− F̄i(s)

)2
var

(
I{SXin >s,Xi

i=M
Xi
n }

)
≤

n∑
i=1

[F̄i(s/n)]2 ∼
n∑
i=1

n2αi [F̄i(s)]
2 ≤

(
n∑
i=1

n2αi

)
[z(s)]2

The variance of ZYNR1(s) can be verified similarly.

Proof of Proposition 4.10

Because Φ(n−2) is differentiable, the survival distribution function of the radius R becomes

F̄R(x) =

n−1∑
j=0

(−1)j
xj

j!
Φ(j)(x)

Following the property of the regularly varying function, with Φ ∈ RV∞(−β) then for j =

1, · · · , (n− 1), we have

lim
x→∞

(−1)j xj Φ(j)(x)

Φ(x)
= β(β + 1) · · · (β + j − 1)

and we can deduce

lim
x→∞

F̄R(x)

Φ(x)
= lim

x→∞

n−1∑
j=1

(−1)j
xj

j!
Φ(j)(x)

Φ(x)
=

n−1∑
j=1

β(β + 1) · · · (β + j − 1)

j!

We define g(r) =
n∑
i=1

F̄←i (Φ(r)) and LY0 (s) = inf{r ∈ R+ : g(r) ≥ s}. Because F̄← and Φ are

both non-increasing functions then for all W ∈ Sn we have

g(r) =
n∑
i=1

F̄←i (Φ(r × 1)) ≥
n∑
i=1

F̄←i (Φ(rWi))
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then LY0 (s) ≤ LY (W, s) ∀W ∈ Sn. Moreover, from the definiton of LY0 (s), we have

max
i=1,2,··· ,n

F̄←i (Φ(LY0 (s))) ≥ s/n→ Φ(LY0 (s)) ≤ max
i=1,2,··· ,n

F̄i(s/n) ≤ nαn max
i=1,2,··· ,n

F̄i(s) ≤ nαnz(s)

Thus, with lim
s→∞

LY0 (s) =∞, the second moment of ZNR2(s) is bounded by

E(
[
ZYNR2(s)

]2
) ≤ 2

([
P (MY

n > s)
]2

+ E
([
F̄R(LY (W, s)

)]2
)
)

≤ 2
([
P (MY

n > s)
]2

+
[
F̄R(LY0 (s))

]2)
∼ 2

[P (MY
n > s)

]2
+

n−1∑
j=1

β(β + 1) · · · (β + j − 1)

j!

2

[Φ(LY0 (s))]2


≤ 2

[z(s)]2 +

n−1∑
j=1

β(β + 1) · · · (β + j − 1)

j!

2

× n2αn [z(s)]2


≤ 2

1 + n2αn

n−1∑
j=1

β(β + 1) · · · (β + j − 1)

j!

2 [z(s)]2

Proof of Proposition 4.11

We start with an inequation between Φ and FR.

Remark If Φ is a n-monotone function, (n− 1)-times differentiable and the random variable

R has the distribution function satisfies 4.6 then we have

Φ(ax)

(1− a)(n−1)
≥ F̄R(x) ∀x ∈ R+ and a ∈ (0, 1)

Indeed, because Φ is non-increasing function then there exists µ ∈ (ax, x) such that

Φ(ax) =
n−2∑
k=0

(1− a)k
xk

k!
(−1)kΦ(k)(x) + (1− a)(n−1)

x(n−1)

(n− 1)!
(−1)(n−1) Φ(n−1)(µ)

Following the property of n-monotone function: (−1)(n−2)Φ(n−2)(x) is a convex function, then

(−1)(n−1)Φ(n−1)(x) is a non-increasing function, that means (−1)(n−1)Φ(n−1)(µ) ≥ (−1)(n−1)Φ(n−1)(x)
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because µ ≤ x. Thus we have

Φ(ax) ≥
n−1∑
k=0

(1− a)k(−1)k
xk

k!
Φ(k)(x)

Φ(ax)

(1− a)(n−1)
≥

n−1∑
k=0

(1− a)(k−n+1)(−1)k
xk

k!
Φ(k)(x) ≥ F̄R(x)

To verify the Proposition 4.11, first ZYNR3,2(s) is bounded by F̄R
(
LYλ (W, s)

)
ZYNR3,2(s) = FR

(
UY (W, s)

)
− FR

(
LYλ (W, s)

)
≤ F̄R

(
LYλ (W, s)

)
Moreover, from the definition of F̄R

(
LYλ (W, s)

)
and M2{

Φ←(F̄i(λs))

Wi
}, there exists two indexes

i1, i2 ∈ 1, 2, · · · , n such that

LYλ (W, s) ≥M2{
Φ←(F̄i(λs))

Wi
} =

Φ←(F̄i1(λs))

Wi1

∨
Φ←(F̄i2(λs))

Wi2

Therefore, {
Wi1L

Y
λ (W, s)≥Φ←(F̄i1(λs))

Wi2L
Y
λ (W, s)≥Φ←(F̄i2(λs))

→

{
Φ
(
Wi1L

Y
λ (W, s)

)
≤F̄i1(λs)

Φ
(
Wi2L

Y
λ (W, s)

)
≤F̄i2(λs)

Appling the remark 3.3 for a = Wij ; j = 1, 2 and x = LYλ (W, s)

{
(1−Wi1)n−1F̄R

(
LYλ (W, s)

)
≤Φ
(
Wi1L

Y
λ (W, s)

)
(1−Wi2)n−1F̄R

(
LYλ (W, s)

)
≤Φ
(
Wi2L

Y
λ (W, s)

)
and for j = 1, 2 we have F̄ij (λs) ∼ λ

−αij F̄ij (s) ≤ λ−αnz(s). Finally,

E([ZYNR3,2(s)]2) ≤ E([F̄R
(
LYλ (W, s)

)
]2) ≤ E

([
(1−Wi1)−(n−1) ∧ (1−Wi2)−(n−1)

]2
)
λ−2αn [z(s)]2

≤ 22n−2λ−2αn [z(s)]2

Proof of Proposition 4.12

From the multivariate distribution function of Y = (Y1, · · · , Yn) in the first section

P(Y1 ≤ y1, · · · , Yn ≤ yn) =
∑

1≤i1,··· ,ij≤n
(−1)j C(F̄i1(yi1), · · · , F̄ij (yij ))
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We can calculate the derivative of F (y1, · · · , yn) following y−i. Note that in the sum of 2n

elements, there are only two elements are different from 0 after taking the derivatives (n − 1)

times.

δ(n−1)P(Y1 ≤ y1, · · · , Yn ≤ yn)

δy1 · · · δyi−1δyi+1 · · · δyn
= Φ(n−1)(

∑
j 6=i

Φ←(F̄j(yj)))
∏
j 6=i

(
Φ←
)(1)

(F̄j(yj))
∏
j 6=i

fj(yj)

− Φ(n−1)(
n∑
j=1

Φ←(F̄j(yj)))
∏
j 6=i

(
Φ←
)(1)

(F̄j(yj))
∏
j 6=i

fj(yj)

and note that the density of Y−i is

f(y−i) = Φ(n−1)(
n∑

j=1,j 6=i
Φ←(F̄j(yj)))

n∏
j=1,j 6=i

(
Φ←
)(1)

(F̄j(yj))
n∏

j=1,j 6=i
fj(yj)

The conditional distribution of Y ∗i = Yi|Y−i = y−i is then

P(Yi < yi|Y−i = y−i) = 1−
(−1)n−1Φ(n−1)(

n∑
j=1

Φ←(F̄j(yj)))
∏
j 6=i

(
Φ←
)(1)

(F̄j(yj))
∏
j 6=i

fj(yj)

(−1)n−1Φ(n−1)(
∑
j 6=i

Φ←(F̄j(yj)))
∏
j 6=i

(
Φ←
)(1)

(F̄j(yj))
∏
j 6=i

fj(yj)

= 1−
Φ(n−1)

( n∑
j=1

Φ←(F̄j(yj))
)

Φ(n−1)
( ∑
j 6=i

Φ←(F̄j(yj))
)

Proof of Proposition 4.13

P(SYn > s,MY
n ≤ κs) = P(SYn > s,MY

n ≤ κs,MY
n−1 >

1− κ
n− 1

s)

If we estimate this probability conditionally on W ∈ Sn by the same method of estimating

ZYNR3,2(s), the value of λ in this case is
1− κ
n− 1

∈ (0, 1/n), the second moment of this estimator is

upper bounded by 22n−2

1− κ
n− 1

−2αn

× [zY (s)]2. Thus, the variance of ZYNR3,2(s) is bounded
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by

Var(ZYNR4(s)) ≤ 2

n∑
i=1

[
(
F̄i(κs)− F̄i(s)

)
]2Var

(
I{SY κin >s,Y κii =MY κi

n }

)
+ 22n−1

1− κ
n− 1

−2αn

[zY (s)]2

≤ 2
n∑
i=1

[F̄i(κs)]
2 + 22n−1

1− κ
n− 1

−2αn

[zY (s)]2

≤

2κ−2αn + 22n−1

1− κ
n− 1

−2αn [zY (s)]2
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Table 4.1: Quality of our estimators, B.r.e: Bounded relative error

Estimator ZNR1 ZNR2 ZNR3 ZNR4

Arch copula B.r.e Not verified Not verified Not verified
Arch survival copula B.r.e B.r.e (Φ ∈ RV∞(−β)) Not verified B.r.e

Other structure B.r.e Not verified Not verified Not verified

Table 4.2: Sum of 5 Lomax (2.5), s = 20, Kendall’s τ = 0.1

Copulas E(ZNR1) E(ZNR2) E(ZNR3) E(ZNR4)

e(ZNR1) e(ZNR2) e(ZNR3) e(ZNR4)

Clayton 0.00379306 0.00386807 0.00384904 0.00383534
2.805 3.174 1.916 0.923

Gumbel 0.00734014 0.00722742 0.00711167 0.00718644
2.818 1.220 0.946 0.666

Survival Clayton 0.00751367 0.00765628 0.00771573 0.007658015
2.774 0.088 0.095 0.145

Survival Gumbel 0.00443284 0.00431637 0.00432776 0.004326611
2.916 0.297 0.295 0.191

Table 4.3: Sum of 5 Lomax (2.5), s = 20, Kendall’s τ = 0.5

Copulas E(ZNR1) E(ZNR2) E(ZNR3) E(ZNR4)

e(ZNR1) e(ZNR2) e(ZNR3) e(ZNR4)

Clayton 0.00592816 0.00626043 0.006108816 0.00610554
2.868 2.132 1.696 0.829

Gumbel 0.01522982 0.01551193 0.015515734 0.015427433
2.106 0.229 0.229 0.184

Survival Clayton 0.01639236 0.01661593 0.016648815 0.016583226
2.034 0.112 0.109 0.126

Survival Gumbel 0.01095976 0.01116367 0.011170268 0.011168049
2.378 0.065 0.065 0.110

Table 4.4: Sum of 5 Lomax (2.5), s = 20, Kendall’s τ = 0.9

Copulas E(ZNR1) E(ZNR2) E(ZNR3) E(ZNR4)

e(ZNR1) e(ZNR2) e(ZNR3) e(ZNR4)

Clayton 0.01701347 0.01722898 0.01730004 0.01714553
1.909 0.636 0.635 0.363

Gumbel 0.01818365 0.01918613 0.0191801 0.01919531
1.922 0.028 0.029 0.032

Survival Clayton 0.0175496 0.01786598 0.01786844 0.01787014
1.966 0.017 0.017 0.023

Survival Gumbel 0.01682336 0.01763007 0.01764852 0.01765862
1.995 0.088 0.089 0.091
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Table 4.5: Sum of 5 Lomax (2.5), s = 200, Kendall’s τ = 0.1

Copulas E(ZNR1) E(ZNR2) E(ZNR3) E(ZNR4)

e(ZNR1) e(ZNR2) e(ZNR3) e(ZNR4)

Clayton 9.27623E-06 9.10775E-06 9.07197E-06 9.07119E-06
1.701 3.396 0.480 0.270

Gumbel 3.19991E-05 3.16144E-05 3.16638E-05 3.13636E-05
3.216 0.752 0.626 0.584

Survival Clayton 2.1843E-05 2.18073E-05 2.17775E-05 2.17643E-05
3.582 0.130 0.165 0.145

Survival Gumbel 9.18493E-06 9.2342E-06 9.22524E-06 9.22872E-06
1.568 0.130 0.070 0.112

Table 4.6: Sum of 5 Lomax (2.5), s = 200, Kendall’s τ = 0.5

Copulas E(ZNR1) E(ZNR2) E(ZNR3) E(ZNR4)

e(ZNR1) e(ZNR2) e(ZNR3) e(ZNR4)

Clayton 9.54965E-06 9.24395E-06 9.37001E-06 9.37181E-06
2.023 2.882 0.182 0.120

Gumbel 7.84723E-05 7.9696E-05 7.91973E-05 7.96030E-05
2.148 0.273 0.240 0.230

Survival Clayton 8.67011E-05 8.63854E-05 8.60928E-05 8.61954E-05
2.036 0.111 0.113 0.133

Survival Gumbel 1.49943E-05 1.53712E-05 1.53317E-05 1.53699E-05
3.559 0.263 0.274 0.179

Table 4.7: Sum of 5 Lomax (2.5), s = 200, Kendall’s τ = 0.9

Copulas E(ZNR1) E(ZNR2) E(ZNR3) E(ZNR4)

e(ZNR1) e(ZNR2) e(ZNR3) e(ZNR4)

Clayton 1.0871E-05 1.1563E-05 1.03202E-05 1.07798E-05
2.867 6.739 1.077 0.818

Gumbel 9.18427E-05 1.09482E-04 1.07552E-04 1.09196E-04
1.973 0.134 0.096 0.127

Survival Clayton 1.14134E-04 9.27657E-05 9.27742E-05 9.27769E-05
1.721 0.017 0.017 0.015

Survival Gumbel 7.74801E-05 7.93332E-05 7.87621E-05 7.94657E-05
2.155 0.136 0.198 0.139
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Conclusion

Dans ce travail de thèse, nous avons apporté des contributions supplémentaires aux techniques

de calcul et de simulation pour l’approximation de la queue de distribution de sommes des

variables aléatoires à variations régulières.

Le premier chapitre de la thèse est constitué d’une introduction générale avec une présentation

des principaux résultats obtenus.

Dans le deuxième chapitre, nous avons proposé un algorithme de calcul pour déterminer la

queue de distribution d’une somme de variables aléatoires de type Pareto. Les variables n’ont

pas nécessairement le même indice de queue ou le même paramètre d’échelle. Le résultat sous

forme de développement en série est simple et facile à implémenter.

Dans le troisième chapitre, nous avons abordé la problématique de la simulation de la probabilité

que la somme de variables aléatoires indépendantes à variations régulières soit plus grande qu’un

seuil élevé. Les résultats obtenus sont plus efficaces que les méthodes précédemment proposées

dans la littérature.

Le quatrième chapitre de cette thèse a apporté des éléments de réponse au problème de calcul de

la queue de distribution de sommes de variables aléatoires dépendantes à variations régulières.

La dépendance est modélisée sous forme de copule archimédienne. Par des techniques de Monte

Carlo conditionnelles, nous proposons quatre estimateurs dont les erreurs relatives sont efficaces

dans le contexte de simulations des événements rares. Les simulations à la fin du chapitre et dans

l’Annexe B montrent que certains estimateurs sont également précis dans les cas des variables

qui ne sont pas à variations régulières.



Appendix A

Some useful concepts

A.1 Properties of regularly varying function

Theorem A.1 (Representation theorem). A positive measurable function L on [x0,∞) is slowly

varying if and only if it can be written in the form

L(x) = c(x) exp


∫ x

x0

ε(y)

y
dy


where c(.) is a measurable non-negative function such that lim

x→∞
= c0 ∈ [0,∞) and ε(x) → 0

when x→∞.

From the representation theorem it is clear that a regularly varying function f with index α

has representation

f(x) = xαc(x) exp


∫ x

x0

ε(y)

y
dy


where c(.) and ε(.) are as above.

Theorem A.2 (Uniform convergent). If f is regularly varying with index α ( in the case α > 0,

assuming f bounded on each interval (0, x]), then for 0 < a < b <∞

lim
x→∞

f(xt)

f(x)
= tα, uniformly in t

• on each [a, b] if α = 0

• on each (0, b] if α > 0

118
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• on each [a,∞) if α < 0

Theorem A.3 (Karamata theorem). Let L be slowly varying and locally bounded in [x0,∞)

for some x0 ≥ 0. Then

• for α > −1

x∫
x0

tαL(t)dt ∼ (α+ 1)−1xα+1L(x)

• for α < −1

∞∫
x

tαL(t)dt ∼ −(α+ 1)−1xα+1L(x)

The conclusions of Karamata’s theorem can alternatively be formulated as follows. Supppose f

is regularly varying with index α and f is locally bounded on [x0,∞) for some x > 0. Then

• for α > −1

lim
x→∞

x∫
x0

f(t)dt

xf(x)
=

1

1 + α

• for α < −1

lim
x→∞

x∫
x0

f(t)dt

xf(x)
= −

1

1 + α

A.2 Modelling dependence with copulas

Copula is a multivariate distribution function deffined on the unit cube [0, 1]n, with uniformly

distributed marginals. Sklar’s theorem (1959) is the most important result regarding copulas,

and is used in essentially all applications of copulas.

Theorem A.4 (Sklar, 1959). Let F be an n-dimensional distribution function with margins

F1, · · · , Fn. Then there exists an n-copula C such that for all x in Rn

F(x1, · · · , xn) = C(F1(x1), · · · , Fn(xn))
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If F1, · · · , Fn are all continuous, then C is unique; otherwise C is uniquel. Conversely, if C is

an n-copula and F1, · · · , Fn are distribution functions, then the function F deffined above is an

n-dimensional distribution function with margins F1, · · · , Fn.

Copula is useful to define the new measures of dependence, concordance between random vari-

ables for example. Let (x, y) and (x̃, ỹ) be two observations from a vector (X,Y ) of continuous

random variables. Then (x, y) and (x̃, ỹ) are said to be concordant if (x − x̃)(y − ỹ) > 0, and

discordant if (x− x̃)(y − ỹ) > 0.

Theorem A.5 (Nelsen, 1999). Let (X,Y ) and (X̃, Ỹ ) be independent vectors of continuous

random variables with joint distribution functions F and F̃, respectively, with common margins

F1 (of X and X̃) and F2 (of Y and Ỹ ). Let C and C̃ denote the copulas of (X,Y ) and (X̃, Ỹ ).

Let Q denote the difference between the probability of concordance and discordance of (X,Y )

and (X̃, Ỹ ), i.e. let

Q = P
(

(X − X̃)(Y − Ỹ ) > 0
)
− P

(
(X − X̃)(Y − Ỹ ) < 0

)
then

Q = Q(C, C̃) = 4

∫ 1

0

∫ 1

0
C̃(u, v) dC(u, v)− 1

Kendall’s Tau and Spearman’s rho are measures of concordance

τ(X,Y ) = Q(C,C) = 4

∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 1

ρ(X,Y ) = 3×Q(C,Π) = 12

∫ 1

0

∫ 1

0
C(u, v) dudv − 3

where Π is the independent copula Π(u, v) = uv.

Tail dependence is a concept that is relevant for the study of dependence between extreme

values.

Definition A.6. Let (X,Y ) be a vector of continuous random variables with marginal distri-

bution functions F1 and F2. The coefficient of upper tail dependence and lower tail dependence

of (X,Y ) are

λU = lim
u→1

P(Y > F←2 (u)|X > F←1 (u))

λL = lim
u→0

P(Y ≤ F←2 (u)|X ≤ F←1 (u))

provided that the limits λU and λL ∈ [0, 1] exist.
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Note that if the copula of (X,Y ) is C and λU , λL exist then

λU = lim
u→1

1− 2u+ C(u, u)

1− u

λL = lim
u→0

C(u, u)

u

A.3 Inverse Laplace transform and GWR alorithm

The analytic solution to the inverse problem is provided by the Post-Widder formula.

Theorem A.7. Post-Widder formula Let f(t) be a continuous function on the interval [0,∞)

of exponential order, i.e. sup
t>0

f(t)
ect < ∞ for some real number c. Then for all t ≥ c the Laplace

transform L(f(t)) is existed and is infinitely differentiable. Furthermore, the inverse Laplace

transform of L(f(t)) is given by

f(t) = lim
k→∞

(−1)k

k!

(k
t

)k+1L(k)(f(t))

for t > 0, where L(k)(f(t)) is kth derivative of L(f(t)).

To simplify the formula, let g(t) = L(f(t)) and fk(t) =
(−1)k

k!

(k
t

)k+1
g(t). Gaver (1960) used

the difference operator to approximate fk(t) by g

fk(t) =
ak

t
Ck2k

k∑
j=0

(−1)j Cjkg(a(k + j)/t)

with a = log(2). The Gaver function fk(t) can be computed by a recursive algorithm

G
(n)
0 =

an

t
g(an/t), 1 ≤ n ≤ 2M

G
(n)
k = (1 +

n

k
)G

(n)
k−1 −

n

k
G

(n+1)
k−1 , k ≥ 1, n ≥ k

fk(t) = G
(k)
k

The Gaver functionals provide a poor approximation because |f(t)− fk(t)| ∼ c/k as k →∞.

The Gave-Wynn-Rho (GWR) algorithm is based on a special sequence acceleration of the Gaver

functionals and is calculated by algorithm of Wynn rho:

• First set the precision to M where M is an even integer.

• Compute the function f1(t), f2(t), · · · , fM (t) by A.1
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• Approximation for f(t): f(t,M) is calculated recursively

ρ
(n)
−1 = 0 ; ρ

(n)
0 = fn(t) ; ρ

(n)
k = ρ

(n+1)
k−2 +

k

ρ
(n+1)
k−1 − ρ(n)

k−1

• Return f(t,M) = ρ
(0)
M
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Table B.1: Compound sum Pareto: Geometric(p = 1/3); Binominal(p = 0.1, n = 30),
Poisson(λ = 3)

s P (SG > s) P (SB > s) P (SP > s)

50 0.01490215 0.01116803 0.01131394
100 0.00369731 0.00343022 0.00344884
500 0.00027840 0.00027546 0.00027572
1000 0.00009661 0.00009611 0.00009616

V aR SG SB SP
99.5% 84.43124592 79.64140474 79.97917234
99.9% 220.3769147 216.64065718 216.9542133

TV aR SG SB SP
99.5% 100.4483012 87.6828265 88.3558543
99.9% 266.9683078 237.6730277 239.0591047

Table B.2: High precision, Compound Pareto (α = 1.38673, β = 1)

s = 75 Compound Poisson, P (SP ≤ s), λP = 3

K=150 0,99090,62583,94987,94461,16572,31656,15350,14832,32813,94395,01447,26730
K=100 0,99090,62583,94987,94461,16572,31656,15350,14832,32813,94395,01447,26730
K=50 0,99090,62583,94987,94461,16572,31656,15351,00086,49012,35983,14979,80984
K=30 0,99090,62583,94987,94461,16572,31628,64023,20306,96016,83345,08914,14328
K=20 0,99090,62583,94987,94462,56454,79154,48504,15251,02565,94152,33592,34410
K=10 0,99090,62583,90735,45308,51126,61397,07815,12376,91297,91588,92462,66065

s = 100 Compound Poisson, P (SP ≤ s), λP = 3

K=150 0.99417,65191,32201,23756,51304,00023,56082,69776,56939,81749,87515,26844
K=100 0.99417,65191,32201,23756,51304,00023,56082,69776,56939,81749,87515,26844
K=50 0.99417,65191,32201,23756,51304,00023,56082,69776,56954,57572,41854,76785
K=30 0.99417,65191,32201,23756,51304,00023,54296,56972,21153,10436,14462,46722
K=20 0.99417,65191,32201,23756,51825,31202,03063,85905.94601,91372,48430,61888
K=10 0.99417,65191,32013,84094,16956,07007,45727,97039.87378,67188,89473,56658

s = 75 Compound Geometric, P (SG ≤ s), pG = 0.25

K=150 0.98783,48893,23327,92839,77666,26575,71893,51597,49148,29564,64519,99008
K=100 0.98783,48893,23327,92839,77666,26508,91804,68002,48064,62555,06067,59478

s = 100 Compound Geometric, P (SG ≤ s), pG = 0.25

K=150 0.99285,99202,94532,95196,44116,37967,78586,42958,78302,42448,63054,96633
K=100 0.99285,99202,94532,95196,44116,37967,78586,42958,78457,31388,16320,28661

Table B.3: High precision, VaR, TVaR of Compound Poisson(λP = 3)
Pareto(α = 1.38673, β = 1)

V aR0.99(SP ) 70.62034,28949,69582,71093,65490

Error ≤ 10−28

TV aR0.99(SP ) 229.10141,44343,25739,00403,21500

Error ≤ 10−28
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Table B.4: High precision, VaR, TVaR of Compound Geometric(pG = 1/3)
Pareto(α = 1.38673, β = 1)

V aR0.99(SG) 83.18821,26447,33167,08707,11829

Error ≤ 10−32

TV aR0.99(SG) 240.98320,30652,37699,15345,55790

Error ≤ 10−32

Table B.5: Sum of 50 Exps(µ = 1), survival Clayton,
Kendall’s τ = 1/3, simulated by ZNR2

s P (S50 ≤ s) e(ZNR2)

100 0.097574172 0.0721066
200 0.010941223 0.0973476
300 0.001425116 0.1070046
400 0.000191641 0.1095835
500 2.59119e-05 0.1104851

Table B.6: Sum of 50 Paretos(α = 2.5, β = 1), survival Clayton,
Kendall’s τ = 0.4, simulated by ZNR2

s P (S50 ≤ s) e(ZNR2)

1000 0.009473277 0.03167215
5000 0.0008963652 0.03179081
20,000 1.132780e-04 0.03212107
100,000 1.015752e-05 0.03195867

Table B.7: Sum of 50 Paretos(α = 2.5, β = 1), survival Clayton,
Kendall’s τ = 0.7, simulated by ZNR2

s P (S50 ≤ s) e(ZNR2)

1000 0.0102844634 0.01844034
5000 0.0009747038 0.01836228
20,000 1.232478e-04 0.01857353
100,000 1.105643e-05 0.01843685
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